From Euler-Lagrange system representation to the generalized Hamiltonian one

Authors

  • Luis Humberto Rodríguez Alfaro Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León
  • Efraín Alcorta-García Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.21640/ns.v7i14.40

Keywords:

Hamiltonian-representation, Euler-Lagrange, Hamilton-equations, transformation

Abstract

The generalized Hamiltonian representation of systems gives structural advantages that can be used in many areas. Some of these are the design of nonlinear observer and model-based fault diagnosis. Many works have as start point the generalized Hamiltonian representation and there is no explication of the way in which this representation is obtained, as for example, starting from the Euler-Lagrange representation of the systems. In this work, a detailed analysis of how this representation is obtained from the n second order differential equations that describe a nonlinear Euler Lagrange system model is presented. In order to show in particular, after the general case, how the generalized Hamiltonian representation is obtained, some case studies are presented.

Downloads

Download data is not yet available.

References

Goldstein, Herbert, Charles Poole and John Safko. (2000). Classical mechanics. Third edition.

Kelly, Rafael, Victor Santibáñez, and Antonio Loría. (2005). Control of robot manipulators in joint space. Springer.

Krause P. C., O. Wasynczuk, and S. D. Sudhoff. (2002). Analysis of electric machinery and drive systems. A. John Wiley and sons, inc. publication. 20

Lara, D., P. Panduro, G. Romero, E. Alcorta and R. Betancourt. Robust control design techniques using differential evolution algorithms applied to the pvtol. Intelligent automation and soft computing.

Ortega, Romeo, Antonio Loría, Per J. Nicklasson and Hebert Sira-Ramírez. (may 1998). Passivity based control of Euler Lagrange systems: Mechanical, electrical and electromechanical applications. Berlin: Springer Verlag.

Rodríguez-Alfaro, L. H., E. Alcorta-García y C. Posadas-Castillo. (2012). Diagnóstico de fallas en sistemas hamiltonianos. Congreso Nacional de Control Automático.

Sira-Ramirez, H. and C. Cruz-Hernández. (2001). Synchronization of chaotic systems: a generalized Hamiltonian systems approach. International Journal of bifurcation and chaos, vol. 11, no. 5:1381-1395.

Spong, Mark W., Seth Hutchinson and M. Vidyasagar. (2006). Robot modeling and control. A. John Wiley and sons, inc.

Van der Schaft, A. (2000). L2-Gain and passivity techniques in nonlinear control. Springer.

White D. C. and H. H. Woodson. (1958). Electromechanical energy conversion.

Wong, K. C., J. A. Guerrero, D. Lara, and R. Lozano. (2007). Attitude stabilization in over flight of a mini tail-sitter uav with variable pitch propeller. In IEEE/RSJ International Conference on Intelligent Robots and Systems.

Published

2015-05-25

How to Cite

Rodríguez Alfaro, L. H., & Alcorta-García, E. (2015). From Euler-Lagrange system representation to the generalized Hamiltonian one. Nova Scientia, 7(14), 01–23. https://doi.org/10.21640/ns.v7i14.40

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.