Chitosan-orange pe el biosorbent for hexavalent chromium removal from aqueous solutions


  • Yanay Fernández Reina National Technological Institute of Mexico in Celaya
  • Pamela V. Sierra Trejo National Technological Institute of Mexico in Celaya
  • Rosalba Patiño Herrera National Technological Institute of Mexico in Celaya
  • Teresa del C. Flores Flores National Technological Institute of Mexico in Celaya
  • Guillermo González Alatorre Tecnológico Nacional de México en Celaya
  • José Francisco Louvier Hernández National Technological Institute of Mexico in Celaya



chitosan, orange peel, hexavalent chromium, drying method, isotherms, Freundlich, beads, biocomposite


chromium is one of the most important water pollutants being Cr(VI) the one with the greatest environmental impact. The objective of this work is to evaluate the adsorption capacity of a biosorbent formed by chitosan-orange peel (CTS-OP) to remove hexavalent chromium from water. The novelty of this work is the evaluation of the drying process effect (oven, vacuum, and freeze-drying) on chromium adsorption capacity. Adsorbents are characterized using X-ray diffraction, FTIR spectroscopy and adsorption kinetics and isotherms measuring Cr(VI) concentration using UV-Vis absorption at 540 nm after complexing with 1,5–diphenylcarbazide. Adsorption capacity is enhanced at pH 2.0 and OPW particle size of 0.300 microns. The shoulder that appears at 944 cm-1 after Cr(VI) adsorption in all three kind of CTS-OPW beads, indicate that chromate ion is bonding with the sorbent. The chi-squared analysis (χ2) indicate that Freundlich isotherm fits better that Langmuir isotherm for all CTS-OPW beads, and the best fit is obtained with Elovich model for kinetic studies. The adsorption capacity of the CTS-OPW beads was also evaluated for the three types of drying. It can be concluded that vacuum oven-dried beads have the highest hexavalent chromium adsorption capacity, 33.89 mg g-1, followed by freeze-dried beads, 32.4 mg g-1, and finally oven-dried beads with a  value of 27.5 mg g-1.


Download data is not yet available.

Author Biographies

Yanay Fernández Reina , National Technological Institute of Mexico in Celaya

Department of Chemical Engineering. Celaya, Guanajuato

Pamela V. Sierra Trejo , National Technological Institute of Mexico in Celaya

Department of Chemical Engineering. Celaya, Guanajuato

Rosalba Patiño Herrera, National Technological Institute of Mexico in Celaya

Department of Chemical Engineering. Celaya, Guanajuato

Teresa del C. Flores Flores, National Technological Institute of Mexico in Celaya

Department of Chemical Engineering. Celaya, Guanajuato

Guillermo González Alatorre, Tecnológico Nacional de México en Celaya

Department of Chemical Engineering. Celaya, Guanajuato

José Francisco Louvier Hernández, National Technological Institute of Mexico in Celaya

Department of Chemical Engineering. Celaya, Guanajuato


Abdou, E. S., Nagy, K. S. A, & Elsabee, M. Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99(5), 1359–1367.

Aharoni, C., & Tompkins, F. C. (1970). Kinetics of Adsorption and Desorption and the Elovich Equation. Advances in Catalysis, 21, 1–49.

Almughamisi, M. S., Khan, Z. A., Alshitari, W., & Elwakeel, K. Z. (2020). Recovery of Chromium(VI) Oxyanions from Aqueous Solution Using Cu(OH)2 and CuO Embedded Chitosan Adsorbents. Journal of Polymers and the Environment, 28, 47–60.

Aydin, Y. A., & Aksoy, N. D. (2009). Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chemical Engineering Journal, 151(1–3), 188–194.

Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18(12), 1501–1507.

Chagas, P. M. B., Caetano, A. A., Rossi, M. A., Gonçalves, M. A., de Castro Ramalho, T., Corrêa, A. D., & do Rosário Guimarães, I. (2019). Chitosan-iron oxide hybrid composite: mechanism of hexavalent chromium removal by central composite design and theoretical calculations. Environmental Science and Pollution Research, 26(16), 15973–15988.

Croitoru, A. M., Ficai, A., Ficai, D., Trusca, R., Dolete, G., Andronescu, E., & Turculet, S. C. (2020). Chitosan/graphene oxide nanocomposite membranes as adsorbents with applications in water purification. Materials, 13(7), 1–13.

de Queiroz Antonino, R., Lia Fook, B., de Oliveira Lima, V., de Farias Rached, R., Lima, E., da Silva Lima, R., Peniche Covas, C., & Lia Fook, M. (2017). Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone). Marine Drugs, 15(5), 141.

Doshi, B., Hietala, S., Antti, J., Repo, E., & Sillanpää, M. (2019). A powdered orange peel combined carboxymethyl chitosan and its acylated derivative for the emulsification of marine diesel and 2T-oil with different qualities of water. Journal of Molecular Liquids, 291, 111327.

El Nemr, A., Aboughaly, R. M., El Sikaily, A., Ragab, S., Masoud, M. S., & Ramadan, M. S. (2020). Microporous nano-activated carbon type I derived from orange peel and its application for Cr(VI) removal from aquatic environment. Biomass Conversion and Biorefinery.

Environmental Protection Agency. (July, 1992). SW-846 Test Method 7196A: Chromium, Hexavalent (Colorimetric).

Ghaneian, M. T., Bhatnagar, A., Ehrampoush, M. H., Amrollahi, M., Jamshidi, B., Dehvari, M., & Taghavi, M. (2017). Biosorption of hexavalent chromium from aqueous solution onto pomegranate seeds: kinetic modeling studies. International Journal of Environmental Science and Technology, 14(2), 331–340.

Gundry, P. M., & Tompkins, F. C. (1960). Chemisorption of gases on metals. Quarterly Reviews, Chemical Society, 14(3), 257–291.

Gupta, V. K., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal, 180, 81–90.

Ho, Y. S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177.

Hoffmann, M. M., Darab, J. G., & Fulton, J. L. (2001). An infrared and X-ray absorption study of the structure and equilibrium of chromate, bichromate, and dichromate in high-temperature aqueous solutions. Journal of Physical Chemistry A, 105(28), 6876–6885.

Hwang, K. T., Kim, J. T., Jung, S. T., Cho, G. S., & Park, H. J. (2003). Properties of Chitosan-Based Biopolymer Films with Various Degrees of Deacetylation and Molecular Weights. Journal of Applied Polymer Science, 89, 3476–3484.

Itankar, N., & Patil, Y. (2021). Employing waste to manage waste: Utilizing waste biomaterials for the elimination of hazardous contaminant [Cr(VI)] from aqueous matrices. Journal of Contaminant Hydrology, 239, Article No. 103775.

Kajjumba, G. W., Emik, S., Öngen, A., Özcan, H. K., & Aydın, S. (2019). Modelling of Adsorption Kinetic Processes—Errors, Theory and Application. In S. Edebali (Ed.), Advanced Sorption Process Applications (pp. 1–19). InTechOpen.

Kalidhasan, S., Santhana Krishna Kumar, A., Rajesh, V., & Rajesh, N. (2016). The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective. Coordination Chemistry Reviews, 317, 157–166.

Kam, H. M., Khor, E., & Lim, L. Y. (1999). Storage of partially deacetylated chitosan films. Journal of Biomedical Materials Research, 48(6), 881–888.

Kaya, M., Baran, T., Mentes, A., Asaroglu, M., Sezen, G., & Tozak, K. O. (2014). Extraction and Characterization of α-Chitin and Chitosan from Six Different Aquatic Invertebrates. Food Biophysics, 9(2), 145–157.

Kousalya, G. N., Rajiv Gandhi, M., & Meenakshi, S. (2010). Sorption of chromium(VI) using modified forms of chitosan beads. International Journal of Biological Macromolecules, 47(2), 308–315.

Kumirska, J., Czerwicka, M., Kaczynski, Z., Bychowska, A., Brzozowski, K., Thöming, J., & Stepnowski, P. (2010). Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Marine Drugs, 8, 1567–1636.

Lagergren, S. Y. (1898). Zur Theorie der sogenannten Adsorption gelöster Stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39.

Liang, L. P., Wang, Q., Xi, F. F., Tan, W. S., Zhang, Y. T., Cheng, L. B., Wu, Q., Xue, Y. Y., & Meng, X. (2020). Effective removal of Cr(VI) from aqueous solution using modified orange peel powder: Equilibrium and kinetic study. Nature Environment and Pollution Technology, 19(4), 1391–1398.

López-Téllez, G., Balderas-Hernández, P., Barrera-Díaz, C. E., Vilchis-Nestor, A. R., Roa-Morales, G., & Bilyeu, B. (2013). Green method to form iron oxide nanorods in orange peels for chromium(VI) reduction. Journal of Nanoscience and Nanotechnology, 13(3), 2354–2361.

López-Téllez, G., Barrera-Díaz, C. E., Balderas-Hernández, P., Roa-Morales, G., & Bilyeu, B. (2011). Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chemical Engineering Journal, 173(2), 480–485.

Low, M. J. D. (1960). Kinetics of chemisorption of gases on solids. Chemical Reviews, 60(3), 267–312.

Lugo-Lugo, V., Barrera-Díaz, C., Ureña-Núñez, F., Bilyeu, B., & Linares-Hernández, I. (2012). Biosorption of Cr(III) and Fe(III) in single and binary systems onto pretreated orange peel. Journal of Environmental Management, 112, 120–127.

Mandina, S., Chigondo, F., Shumba, M., Nyamunda, C., & Sebata, E. (2013). Removal of chromium (VI) from aqueous solution using chemically modified orange (Citrus cinensis) peel. IOSR Journal of Applied Chemistry (IOSR-JAC), 6(2), 66–75.

McLintock, I. S. (1967). The Elovich Equation in Chemisorption Kinetics. Nature, 216, 1204–1205.

Mogilevskaya, E. L., Akopova, T. A., Zelenetskii, A. N., & Ozerin, A. N. (2006). The crystal structure of chitin and chitosan. Polymer Science Series A, 48(2), 116–123.

Moussout, H., Ahlafi, H., Aazza, M., & El Akili, C. (2018). Performances of local chitosan and its nanocomposite 5%Bentonite/Chitosan in the removal of chromium ions (Cr(VI)) from wastewater. International Journal of Biological Macromolecules, 108, 1063–1073.

Murugesan, A., Vidhyadevi, T., Kirupha, S. D., Ravikumar, L., & Sivanesan, S. (2013). Removal of Chromium (VI) From Aqueous Solution Using Chemically Modified Corncorb-Activated Carbon: Equilibrium and Kinetic Studies. Environmental Progress & Sustainable Energy, 32(3), 673–680.

Nomanbhay, S. M., & Palanisamy, K. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology, 8(1), 43–53.

Olea-Mejía, O., Cabral-Prieto, A., Salcedo-Castillo, U., López-Tellez, G., Olea-Cardoso, O., & López-Castañares, R. (2017). Orange peel + nanostructured zero-valent-iron composite for the removal of hexavalent chromium in water. Applied Surface Science, 423, 170–175.

Owlad, M., Aroua, M. K., Daud, W. A. W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: A review. Water, Air, and Soil Pollution, 200(1–4), 59–77.

Pavithra, S., Thandapani, G., S, S., P.N., S., Alkhamis, H. H., Alrefaei, A. F., & Almutairi, M. H. (2021). Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater. Chemosphere, 271, 129415.

Pehlivan, E., Pehlivan, E., & Tutar Kahraman, H. (2012). Hexavalent chromium removal by Osage Orange. Food Chemistry, 133(4), 1478–1484.

Pérez-Fonseca, A., Gómez, C., Dávila, H., González-Núñez, R., Robledo-Ortíz, J. R., Vázquez-Lepe, M. O., & Herrera-Gómez, A. (2012). Chitosan Supported onto Agave Fiber—Postconsumer HDPE Composites for Cr(VI) Adsorption. Industrial & Engineering Chemistry Research, 51(17), 5939–5946.

Pertile, E., Dvorský, T., Václavík, V., & Heviánková, S. (2021). Use of different types of biosorbents to remove Cr (VI) from aqueous solution. Life, 11(3).

Ritchie, H. & Roser, M. (July, 2018). Water Use and Stress. Our World in Data.

Roginsky, S., Zeldovich, Y.B., 1934. The catalytic oxidation of carbon monoxide on manganese dioxide. Acta Phys. Chem. USSR 1, 554.

Rojas, G., Silva, J., Flores, J. A., Rodriguez, A., Ly, M., & Maldonado, H. (2005). Adsorption of chromium onto cross-linked chitosan. Separation and Purification Technology, 44(1), 31–36.

Sankararamakrishnan, N., Dixit, A., Iyengar, L., & Sanghi, R. (2006). Removal of hexavalent chromium using a novel cross linked xanthated chitosan. Bioresource Technology, 97(18), 2377–2382.

Shigemasa, Y., Matsuura, H., Sashiwa, H., & Saimoto, H. (1996). Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. International Journal of Biological Macromolecules, 18(3), 237–242.

Simonin, J. P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254–263.

South Australia Health. (April 3, 2022). Chromium: health effects. Government of South Australia.

Taylor, H. A., & Thon, N. (1952). Kinetics of Chemisorption. Journal of the American Chemical Society, 74, 4169–4173.

Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., & Chao, H. P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116.

United States Environmental Protection Agency. (March 7, 2022). Chromium in Drinking Water. USEPA.

Vakili, M., Deng, S., Li, T., Wang, W., Wang, W., & Yu, G. (2018). Novel crosslinked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. Chemical Engineering Journal, 347, 782–790.

Venugopal, V., & Mohanty, K. (2011). Biosorptive uptake of Cr(VI) from aqueous solutions by Parthenium hysterophorus weed: Equilibrium, kinetics and thermodynamic studies. Chemical Engineering Journal, 174(1), 151–158.

Venugopal, V., & Mohanty, K. (2012). Erratum to “ Biosorptive uptake of Cr(VI) from aqueous solutions by Parthenium hysterophorus weed: Equilibrium, kinetics and thermodynamic studies” [Chem. Eng. J. 174 (2011) 151-158]. Chemical Engineering Journal, 188, 233.

Vieira, R. S., Meneghetti, E., Baroni, P., Guibal, E., González De La Cruz, V. M., Caballero, A., Rodríguez-Castellón, E., & Beppu, M. M. (2014). Chromium removal on chitosan-based sorbents - An EXAFS/XANES investigation of mechanism. Materials Chemistry and Physics, 146(3), 412–417.

Wan Ngah, W. S., Kamari, A., Fatinathan, S., & Ng, P. W. (2006). Adsorption of chromium from aqueous solution using chitosan beads. Adsorption, 12(4), 249–257.

World Water Assessment Programme. (2019). The United Nations World Water Development Report 2019: Leaving No One Behind. UNESCO.

Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150(2–3), 366–373.

Yang, J., Huang, B., & Lin, M. (2020). Adsorption of Hexavalent Chromium from Aqueous Solution by a Chitosan/Bentonite Composite: Isotherm, Kinetics, and Thermodynamics Studies. Journal of Chemical and Engineering Data, 65(5), 2751–2763.

Zhang, L., Yang, Z., Li, T., Zhou, S., & Wu, Z. (2015). Perchlorate adsorption onto orange peel modified by cross-linking amine groups from aqueous solutions. Water Science and Technology, 71(11), 1629–1637.

Zhang, Y., Xue, C., Xue, Y., Gao, R., & Zhang, X. (2005). Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydrate Research, 340(11), 1914–1917.




How to Cite

Fernández Reina , Y. ., Sierra Trejo , P. V., Patiño Herrera, R. ., Flores Flores, T. del C., González Alatorre, G. ., & Louvier Hernández, J. F. (2023). Chitosan-orange pe el biosorbent for hexavalent chromium removal from aqueous solutions. Nova Scientia, 15(31), 1–22.



Natural Sciences and Engineering


Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.