Chitosan-orange pe el biosorbent for hexavalent chromium removal from aqueous solutions

Authors

  • Yanay Fernández Reina National Technological Institute of Mexico in Celaya
  • Pamela V. Sierra Trejo National Technological Institute of Mexico in Celaya
  • Rosalba Patiño Herrera National Technological Institute of Mexico in Celaya https://orcid.org/0000-0002-0057-9310
  • Teresa del C. Flores Flores National Technological Institute of Mexico in Celaya
  • Guillermo González Alatorre Tecnológico Nacional de México en Celaya
  • José Francisco Louvier Hernández National Technological Institute of Mexico in Celaya http://orcid.org/0000-0002-1340-9863

DOI:

https://doi.org/10.21640/ns.v15i31.3161

Keywords:

chitosan, orange peel, hexavalent chromium, drying method, isotherms, Freundlich, beads, biocomposite

Abstract

chromium is one of the most important water pollutants being Cr(VI) the one with the greatest environmental impact. The objective of this work is to evaluate the adsorption capacity of a biosorbent formed by chitosan-orange peel (CTS-OP) to remove hexavalent chromium from water. The novelty of this work is the evaluation of the drying process effect (oven, vacuum, and freeze-drying) on chromium adsorption capacity. Adsorbents are characterized using X-ray diffraction, FTIR spectroscopy and adsorption kinetics and isotherms measuring Cr(VI) concentration using UV-Vis absorption at 540 nm after complexing with 1,5–diphenylcarbazide. Adsorption capacity is enhanced at pH 2.0 and OPW particle size of 0.300 microns. The shoulder that appears at 944 cm-1 after Cr(VI) adsorption in all three kind of CTS-OPW beads, indicate that chromate ion is bonding with the sorbent. The chi-squared analysis (χ2) indicate that Freundlich isotherm fits better that Langmuir isotherm for all CTS-OPW beads, and the best fit is obtained with Elovich model for kinetic studies. The adsorption capacity of the CTS-OPW beads was also evaluated for the three types of drying. It can be concluded that vacuum oven-dried beads have the highest hexavalent chromium adsorption capacity, 33.89 mg g-1, followed by freeze-dried beads, 32.4 mg g-1, and finally oven-dried beads with a  value of 27.5 mg g-1.

Downloads

Download data is not yet available.

Author Biographies

Yanay Fernández Reina , National Technological Institute of Mexico in Celaya

Department of Chemical Engineering. Celaya, Guanajuato

Pamela V. Sierra Trejo , National Technological Institute of Mexico in Celaya

Department of Chemical Engineering. Celaya, Guanajuato

Rosalba Patiño Herrera, National Technological Institute of Mexico in Celaya

Department of Chemical Engineering. Celaya, Guanajuato

Teresa del C. Flores Flores, National Technological Institute of Mexico in Celaya

Department of Chemical Engineering. Celaya, Guanajuato

Guillermo González Alatorre, Tecnológico Nacional de México en Celaya

Department of Chemical Engineering. Celaya, Guanajuato

José Francisco Louvier Hernández, National Technological Institute of Mexico in Celaya

Department of Chemical Engineering. Celaya, Guanajuato

References

Abdou, E. S., Nagy, K. S. A, & Elsabee, M. Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99(5), 1359–1367. https://doi.org/10.1016/j.biortech.2007.01.051

Aharoni, C., & Tompkins, F. C. (1970). Kinetics of Adsorption and Desorption and the Elovich Equation. Advances in Catalysis, 21, 1–49. https://doi.org/10.1016/S0360-0564(08)60563-5

Almughamisi, M. S., Khan, Z. A., Alshitari, W., & Elwakeel, K. Z. (2020). Recovery of Chromium(VI) Oxyanions from Aqueous Solution Using Cu(OH)2 and CuO Embedded Chitosan Adsorbents. Journal of Polymers and the Environment, 28, 47–60. https://doi.org/10.1007/s10924-019-01575-z

Aydin, Y. A., & Aksoy, N. D. (2009). Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chemical Engineering Journal, 151(1–3), 188–194. https://doi.org/10.1016/j.cej.2009.02.010

Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18(12), 1501–1507. https://doi.org/10.1016/0043-1354(84)90124-6

Chagas, P. M. B., Caetano, A. A., Rossi, M. A., Gonçalves, M. A., de Castro Ramalho, T., Corrêa, A. D., & do Rosário Guimarães, I. (2019). Chitosan-iron oxide hybrid composite: mechanism of hexavalent chromium removal by central composite design and theoretical calculations. Environmental Science and Pollution Research, 26(16), 15973–15988. https://doi.org/10.1007/s11356-019-04545-z

Croitoru, A. M., Ficai, A., Ficai, D., Trusca, R., Dolete, G., Andronescu, E., & Turculet, S. C. (2020). Chitosan/graphene oxide nanocomposite membranes as adsorbents with applications in water purification. Materials, 13(7), 1–13. https://doi.org/10.3390/ma13071687

de Queiroz Antonino, R., Lia Fook, B., de Oliveira Lima, V., de Farias Rached, R., Lima, E., da Silva Lima, R., Peniche Covas, C., & Lia Fook, M. (2017). Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone). Marine Drugs, 15(5), 141. https://doi.org/10.3390/md1505014

Doshi, B., Hietala, S., Antti, J., Repo, E., & Sillanpää, M. (2019). A powdered orange peel combined carboxymethyl chitosan and its acylated derivative for the emulsification of marine diesel and 2T-oil with different qualities of water. Journal of Molecular Liquids, 291, 111327. https://doi.org/10.1016/j.molliq.2019.111327

El Nemr, A., Aboughaly, R. M., El Sikaily, A., Ragab, S., Masoud, M. S., & Ramadan, M. S. (2020). Microporous nano-activated carbon type I derived from orange peel and its application for Cr(VI) removal from aquatic environment. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00995-5

Environmental Protection Agency. (July, 1992). SW-846 Test Method 7196A: Chromium, Hexavalent (Colorimetric). https://www.epa.gov/sites/default/files/2015-12/documents/7196a.pdf

Ghaneian, M. T., Bhatnagar, A., Ehrampoush, M. H., Amrollahi, M., Jamshidi, B., Dehvari, M., & Taghavi, M. (2017). Biosorption of hexavalent chromium from aqueous solution onto pomegranate seeds: kinetic modeling studies. International Journal of Environmental Science and Technology, 14(2), 331–340. https://doi.org/10.1007/s13762-016-1216-8

Gundry, P. M., & Tompkins, F. C. (1960). Chemisorption of gases on metals. Quarterly Reviews, Chemical Society, 14(3), 257–291. https://doi.org/0.1039/QR9601400257

Gupta, V. K., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal, 180, 81–90. https://doi.org/10.1016/j.cej.2011.11.006

Ho, Y. S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf

Hoffmann, M. M., Darab, J. G., & Fulton, J. L. (2001). An infrared and X-ray absorption study of the structure and equilibrium of chromate, bichromate, and dichromate in high-temperature aqueous solutions. Journal of Physical Chemistry A, 105(28), 6876–6885. https://doi.org/10.1021/jp0104740

Hwang, K. T., Kim, J. T., Jung, S. T., Cho, G. S., & Park, H. J. (2003). Properties of Chitosan-Based Biopolymer Films with Various Degrees of Deacetylation and Molecular Weights. Journal of Applied Polymer Science, 89, 3476–3484. https://doi.org/10.1002/app.12561

Itankar, N., & Patil, Y. (2021). Employing waste to manage waste: Utilizing waste biomaterials for the elimination of hazardous contaminant [Cr(VI)] from aqueous matrices. Journal of Contaminant Hydrology, 239, Article No. 103775. https://doi.org/10.1016/j.jconhyd.2021.103775

Kajjumba, G. W., Emik, S., Öngen, A., Özcan, H. K., & Aydın, S. (2019). Modelling of Adsorption Kinetic Processes—Errors, Theory and Application. In S. Edebali (Ed.), Advanced Sorption Process Applications (pp. 1–19). InTechOpen. https://doi.org/10.5772/intechopen.80495

Kalidhasan, S., Santhana Krishna Kumar, A., Rajesh, V., & Rajesh, N. (2016). The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective. Coordination Chemistry Reviews, 317, 157–166. https://doi.org/10.1016/j.ccr.2016.03.004

Kam, H. M., Khor, E., & Lim, L. Y. (1999). Storage of partially deacetylated chitosan films. Journal of Biomedical Materials Research, 48(6), 881–888. http://www.ncbi.nlm.nih.gov/pubmed/10556855

Kaya, M., Baran, T., Mentes, A., Asaroglu, M., Sezen, G., & Tozak, K. O. (2014). Extraction and Characterization of α-Chitin and Chitosan from Six Different Aquatic Invertebrates. Food Biophysics, 9(2), 145–157. https://doi.org/10.1007/s11483-013-9327-y

Kousalya, G. N., Rajiv Gandhi, M., & Meenakshi, S. (2010). Sorption of chromium(VI) using modified forms of chitosan beads. International Journal of Biological Macromolecules, 47(2), 308–315. https://doi.org/10.1016/j.ijbiomac.2010.03.010

Kumirska, J., Czerwicka, M., Kaczynski, Z., Bychowska, A., Brzozowski, K., Thöming, J., & Stepnowski, P. (2010). Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Marine Drugs, 8, 1567–1636. https://doi.org/10.3390/md8051567

Lagergren, S. Y. (1898). Zur Theorie der sogenannten Adsorption gelöster Stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39. https://weburn.kb.se/eod/1990/NLS13A011990.pdf

Liang, L. P., Wang, Q., Xi, F. F., Tan, W. S., Zhang, Y. T., Cheng, L. B., Wu, Q., Xue, Y. Y., & Meng, X. (2020). Effective removal of Cr(VI) from aqueous solution using modified orange peel powder: Equilibrium and kinetic study. Nature Environment and Pollution Technology, 19(4), 1391–1398. https://doi.org/10.46488/NEPT.2020.v19i04.005

López-Téllez, G., Balderas-Hernández, P., Barrera-Díaz, C. E., Vilchis-Nestor, A. R., Roa-Morales, G., & Bilyeu, B. (2013). Green method to form iron oxide nanorods in orange peels for chromium(VI) reduction. Journal of Nanoscience and Nanotechnology, 13(3), 2354–2361. https://doi.org/10.1166/jnn.2013.7093

López-Téllez, G., Barrera-Díaz, C. E., Balderas-Hernández, P., Roa-Morales, G., & Bilyeu, B. (2011). Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chemical Engineering Journal, 173(2), 480–485. https://doi.org/10.1016/j.cej.2011.08.01

Low, M. J. D. (1960). Kinetics of chemisorption of gases on solids. Chemical Reviews, 60(3), 267–312. https://doi.org/0.1021/cr60205a003

Lugo-Lugo, V., Barrera-Díaz, C., Ureña-Núñez, F., Bilyeu, B., & Linares-Hernández, I. (2012). Biosorption of Cr(III) and Fe(III) in single and binary systems onto pretreated orange peel. Journal of Environmental Management, 112, 120–127. https://doi.org/10.1016/j.jenvman.2012.07.009

Mandina, S., Chigondo, F., Shumba, M., Nyamunda, C., & Sebata, E. (2013). Removal of chromium (VI) from aqueous solution using chemically modified orange (Citrus cinensis) peel. IOSR Journal of Applied Chemistry (IOSR-JAC), 6(2), 66–75. https://iosrjournals.org/iosr-jac/papers/vol6-issue2/H0626675.pdf?id=7283

McLintock, I. S. (1967). The Elovich Equation in Chemisorption Kinetics. Nature, 216, 1204–1205. https://doi.org/10.1038/2161204a0

Mogilevskaya, E. L., Akopova, T. A., Zelenetskii, A. N., & Ozerin, A. N. (2006). The crystal structure of chitin and chitosan. Polymer Science Series A, 48(2), 116–123. https://doi.org/10.1134/S0965545X06020039

Moussout, H., Ahlafi, H., Aazza, M., & El Akili, C. (2018). Performances of local chitosan and its nanocomposite 5%Bentonite/Chitosan in the removal of chromium ions (Cr(VI)) from wastewater. International Journal of Biological Macromolecules, 108, 1063–1073. https://doi.org/10.1016/j.ijbiomac.2017.11.018

Murugesan, A., Vidhyadevi, T., Kirupha, S. D., Ravikumar, L., & Sivanesan, S. (2013). Removal of Chromium (VI) From Aqueous Solution Using Chemically Modified Corncorb-Activated Carbon: Equilibrium and Kinetic Studies. Environmental Progress & Sustainable Energy, 32(3), 673–680. https://doi.org/10.1002/ep.1168

Nomanbhay, S. M., & Palanisamy, K. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology, 8(1), 43–53. https://doi.org/10.2225/vol8-issue1-fulltext-7

Olea-Mejía, O., Cabral-Prieto, A., Salcedo-Castillo, U., López-Tellez, G., Olea-Cardoso, O., & López-Castañares, R. (2017). Orange peel + nanostructured zero-valent-iron composite for the removal of hexavalent chromium in water. Applied Surface Science, 423, 170–175. https://doi.org/10.1016/j.apsusc.2017.06.173

Owlad, M., Aroua, M. K., Daud, W. A. W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: A review. Water, Air, and Soil Pollution, 200(1–4), 59–77. https://doi.org/10.1007/s11270-008-9893-7

Pavithra, S., Thandapani, G., S, S., P.N., S., Alkhamis, H. H., Alrefaei, A. F., & Almutairi, M. H. (2021). Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater. Chemosphere, 271, 129415. https://doi.org/10.1016/j.chemosphere.2020.129415

Pehlivan, E., Pehlivan, E., & Tutar Kahraman, H. (2012). Hexavalent chromium removal by Osage Orange. Food Chemistry, 133(4), 1478–1484. https://doi.org/10.1016/j.foodchem.2012.02.037

Pérez-Fonseca, A., Gómez, C., Dávila, H., González-Núñez, R., Robledo-Ortíz, J. R., Vázquez-Lepe, M. O., & Herrera-Gómez, A. (2012). Chitosan Supported onto Agave Fiber—Postconsumer HDPE Composites for Cr(VI) Adsorption. Industrial & Engineering Chemistry Research, 51(17), 5939–5946. https://doi.org/10.1021/ie201242x

Pertile, E., Dvorský, T., Václavík, V., & Heviánková, S. (2021). Use of different types of biosorbents to remove Cr (VI) from aqueous solution. Life, 11(3). https://doi.org/10.3390/life11030240

Ritchie, H. & Roser, M. (July, 2018). Water Use and Stress. Our World in Data. https://ourworldindata.org/water-use-stress

Roginsky, S., Zeldovich, Y.B., 1934. The catalytic oxidation of carbon monoxide on manganese dioxide. Acta Phys. Chem. USSR 1, 554.

Rojas, G., Silva, J., Flores, J. A., Rodriguez, A., Ly, M., & Maldonado, H. (2005). Adsorption of chromium onto cross-linked chitosan. Separation and Purification Technology, 44(1), 31–36. https://doi.org/10.1016/j.seppur.2004.11.013

Sankararamakrishnan, N., Dixit, A., Iyengar, L., & Sanghi, R. (2006). Removal of hexavalent chromium using a novel cross linked xanthated chitosan. Bioresource Technology, 97(18), 2377–2382. https://doi.org/10.1016/j.biortech.2005.10.024

Shigemasa, Y., Matsuura, H., Sashiwa, H., & Saimoto, H. (1996). Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. International Journal of Biological Macromolecules, 18(3), 237–242. https://doi.org/10.1016/0141-8130(95)01079-3

Simonin, J. P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254–263. https://doi.org/10.1016/j.cej.2016.04.079

South Australia Health. (April 3, 2022). Chromium: health effects. Government of South Australia. https://www.sahealth.sa.gov.au/wps/wcm/connect/public+content/sa+health+internet/conditions/chemicals+and+contaminants/chromium+health+effects

Taylor, H. A., & Thon, N. (1952). Kinetics of Chemisorption. Journal of the American Chemical Society, 74, 4169–4173. https://doi.org/https://doi.org/10.1021/ja01136a063

Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., & Chao, H. P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116. https://doi.org/10.1016/j.watres.2017.04.014

United States Environmental Protection Agency. (March 7, 2022). Chromium in Drinking Water. USEPA. https://www.epa.gov/sdwa/chromium-drinking-water

Vakili, M., Deng, S., Li, T., Wang, W., Wang, W., & Yu, G. (2018). Novel crosslinked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. Chemical Engineering Journal, 347, 782–790. https://doi.org/10.1016/j.cej.2018.04.181

Venugopal, V., & Mohanty, K. (2011). Biosorptive uptake of Cr(VI) from aqueous solutions by Parthenium hysterophorus weed: Equilibrium, kinetics and thermodynamic studies. Chemical Engineering Journal, 174(1), 151–158. https://doi.org/10.1016/j.cej.2011.08.068

Venugopal, V., & Mohanty, K. (2012). Erratum to “ Biosorptive uptake of Cr(VI) from aqueous solutions by Parthenium hysterophorus weed: Equilibrium, kinetics and thermodynamic studies” [Chem. Eng. J. 174 (2011) 151-158]. Chemical Engineering Journal, 188, 233. https://doi.org/10.1016/j.cej.2012.02.018

Vieira, R. S., Meneghetti, E., Baroni, P., Guibal, E., González De La Cruz, V. M., Caballero, A., Rodríguez-Castellón, E., & Beppu, M. M. (2014). Chromium removal on chitosan-based sorbents - An EXAFS/XANES investigation of mechanism. Materials Chemistry and Physics, 146(3), 412–417. https://doi.org/10.1016/j.matchemphys.2014.03.046

Wan Ngah, W. S., Kamari, A., Fatinathan, S., & Ng, P. W. (2006). Adsorption of chromium from aqueous solution using chitosan beads. Adsorption, 12(4), 249–257. https://doi.org/10.1007/s10450-006-0501-0

World Water Assessment Programme. (2019). The United Nations World Water Development Report 2019: Leaving No One Behind. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000367306

Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150(2–3), 366–373. https://doi.org/10.1016/j.cej.2009.01.014

Yang, J., Huang, B., & Lin, M. (2020). Adsorption of Hexavalent Chromium from Aqueous Solution by a Chitosan/Bentonite Composite: Isotherm, Kinetics, and Thermodynamics Studies. Journal of Chemical and Engineering Data, 65(5), 2751–2763. https://doi.org/10.1021/acs.jced.0c00085

Zhang, L., Yang, Z., Li, T., Zhou, S., & Wu, Z. (2015). Perchlorate adsorption onto orange peel modified by cross-linking amine groups from aqueous solutions. Water Science and Technology, 71(11), 1629–1637. https://doi.org/10.2166/wst.2015.130

Zhang, Y., Xue, C., Xue, Y., Gao, R., & Zhang, X. (2005). Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydrate Research, 340(11), 1914–1917. https://doi.org/10.1016/j.carres.2005.05.005

Downloads

Published

2023-09-26

How to Cite

Fernández Reina , Y. ., Sierra Trejo , P. V., Patiño Herrera, R. ., Flores Flores, T. del C., González Alatorre, G. ., & Louvier Hernández, J. F. (2023). Chitosan-orange pe el biosorbent for hexavalent chromium removal from aqueous solutions. Nova Scientia, 15(31), 1–22. https://doi.org/10.21640/ns.v15i31.3161

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 > >> 

You may also start an advanced similarity search for this article.