Design, manufacture, and control motion of cartesian robot prototype with 5-DOF robot arm for possible spinning applications at laboratory-level

Authors

DOI:

https://doi.org/10.21640/ns.v15i30.3209

Keywords:

cartesian robot , robot arm, designs, manufacture, control, prototypes, mechatronic systems , motors, electronic elements, control algorithms

Abstract

This document presents the development of a prototype of a Cartesian robot with a 5 degrees-of-freedom articulated robot arm for possible applications in a wet spinning process at the laboratory-level. The mechatronic system was developed using various modular electronics elements compatible with an ArduinoTM Mega 2560 microcontroller. The control algorithm recognizes the position of the servomotors and the speed of the motors so that the prototype performs a complete cycle of displacement in 67 s, which includes the transport of a polymeric filament immersed in a coagulation bath for 10 s. A structural analysis indicates that there will be no tension failures because the maximum and axial stress of the Cartesian robot was 2.89 MPa while the von Mises tension of the robotic arm was 468 MPa, both tensions below their upper limits. The pulse signals, in the order of 4000 +25 ms, of the servomotors were consistent in 96-98% repeatability and 3-19% reproducibility. Forty percent of the extrusion tests performed were satisfactory, since the transport of a polymeric filament within a coagulant solution was achieved.

Downloads

Download data is not yet available.

Author Biographies

José Alonso Dena Aguilar, TecNM/I. T. of Arteaga Pavilion

Department of Engineering. Arteaga Pavilion, Aguascalientes

Juan Carlos Delgado Flores, TecNM/I. T. of Arteaga Pavilion

Department of Engineering. Arteaga Pavilion, Aguascalientes

Julio Acevedo Martínez, TechNM/I. T. of Aguascalientes

Division of Professional Studies. Aguascalientes, Mexico

Víctor Manuel Velasco Gallardo, TechNM/I. T. of Arteaga Pavilion

Engineering Department. Arteaga Pavilion, Aguascalientes

Edgar Zacarías Moreno, TechNM/I. T. of Arteaga Pavilion

Engineering Department. Arteaga Pavilion, Aguascalientes

Enrique Javier Martínez Delgado, TechNM/I. T. of Arteaga Pavilion

Engineering Department. Arteaga Pavilion, Aguascalientes

Nivia Iracemi Escalante García, TechNM/I. T. of Arteaga Pavilion

Artificial Lighting Laboratory. Arteaga Pavilion, Aguascalientes

References

Dena-Aguilar, J. A., Jáuregui-Rincon, J, Bonilla-Petriciolet, A., Medina-Ramírez, I. E. & Romero-García, J. (2011). Graft copolymerization of poly(acrylonitrile) and vinyl acetate on starch via free radical in solution: synthesis and characterization. Afinidad, 68 (553), 195-202.

Dena-Aguilar, J. A., Zacarías-Moreno, E, Acevedo-Martínez, J., García-Vargas, F. & Moreno-Paredes, J. G. (2018). Diseño y construcción de un sistema de extrusión en frio de bajo volumen para la obtención de fibras poliméricas. Reporte técnico, Autor.

Fleischer, H., Drews, R. R., Janson, J., Patlolla, B. R. C., Chu, X., Klos, M. & Thurow, K. (2016). Application of a Dual-Arm robot in complex sample preparation and measurement processes. Journal of Laboratory Automation, 21(5), 671-681, doi: 10.1177/2211068216637352

He, Y., Du, E., Zhou, X., Zhou, J., He, Y., Ye, Y., Wang, J., Tang, B. & Wang, X. (2020). Wet-spinning of fluorescent fibers based on gold nanoclusters-loaded alginate for sensing of heavy metal ions and anti-counterfeiting. Spectrochim. Acta A Mol. Biomol. Spectrosc., 230, 118031. doi: https://doi.org/10.1016/j.saa.2020.118031

Käfferlein, H. U., Ferstl, C., Burkhart-Reichl, A., Hennebrüder, K., Drexler, H., Brüning, T. & Angerer, J. (2005). The use of biomarkers of exposure of N,N-dimethylformamide in health risk assessment and occupational hygiene in the polyacrylic fibre industry. Occup. Environ. Med., 62(5), 330-336. doi: http://dx.doi.org/10.1136/oem.2004.017129

Minati, L., Yoshimura, N. & Koike, Y. (2016). Hybrid Control of a Vision-Guided Robot Arm by EOG, EMG, EEG Biosignals and Head Movement Acquired via a Consumer-Grade Wearable Device. IEEE Access, 4, 9528-9541. doi: 10.1109/ACCESS.2017.2647851

Pomberger, A., Jose, N., Walz, D., Meissner, J., Holze, C., Kopczynski, M., Müller-Bischof, P. & Lapkin, A.A. (2023). Automated pH Adjustment Driven by Robotic Workflows and Active Machine Learning. Chemical Engineering Journal, 451 (part 4), 2023, 139099, https://doi.org/10.1016/j.cej.2022.139099

Rahul, K., Raheman, H. & Paradkar, V. (2020). Design of a 4 DOF parallel robot arm and the firmware implementation on embedded system to transplant pot seedlings. Artificial Intelligence in Agriculture, 4, 172-183. doi: https://doi.org/10.1016/j.aiia.2020.09.003

Sepúlveda, D., Fernández, R., Navas, E., Armada, M. & González-De-Santos, P. (2020). Robotic Aubergine Harvesting Using Dual-Arm Manipulation. IEEE Access, 8, 121889-121904. doi: 10.1109/ACCESS.2020.3006919

Shah, R. & Pandey, A. B. (2018). Concept for Automated Sorting Robotic Arm. Procedia Manufacturing, 20, 400-405. doi: https://doi.org/10.1016/j.promfg.2018.02.058

Siemasz, A., Tomczuk, K. & Malecha, Z. (2020). 3D printed robotic arm with elements of artificial intelligence. Proceeds Computer Science, 176, 3741-3750. doi: https://doi.org/10.1016/j.procs.2020.09.013

Tuntivivat, S. & Prempraneerach, P. (2011). Design and Construction and Motion Control of 6-Axis Robot Manipulator for Industrial Applications. The Second TSME International Conference on Mechanical Engineering, Krabi, Thailand, 19-21 October.

Yang, H.-S., Kim, Y.-M., Choi, H., Jang, J., Youk, J. H., Lee, B.-S. & Yu, W.-R. (2020). Electrochemical wet-spinning process for fabricating strong PAN fibers via an in situ induced plasticizing effect. Polymer, 202, 122641. doi: https://doi.org/10.1016/j.polymer.2020.122641

Ye, H., Wang, J., Shi, J., Du, J., Zhou, Y., Huang, M. & Sun, B. (2021). Automatic and Intelligent Technologies of Solid-State Fermentation Process of Baijiu Production: Applications, Challenges, and Prospects. Foods, 10, 680. doi: https://doi.org/10.3390/foods10030680

Yun, Y., Lee, S. J. & Kang, S. (2020). Motion Recognition-Based Robot Arm Control System Using Head Mounted Display. IEEE Access, 8, 15017-15026. doi: 10.1109/ ACCESS.2020.2964801

Zhang, B., Lu, C., Liu, Y., Zhou, P., Yu, Z. & Yuan, S. (2019). Wet spun polyacrylonitrile-based hollow-mesoporous fibers with different draw ratios. Polymer, 179, 121618. doi: https://doi.org/10.1016/j.polymer.2019.121618

Downloads

Published

2023-05-29

How to Cite

Dena Aguilar, J. A. ., Delgado Flores, J. C., Acevedo Martínez, J., Velasco Gallardo, V. M. ., Zacarías Moreno, E. ., Martínez Delgado, E. J. ., & Escalante García, N. I. . (2023). Design, manufacture, and control motion of cartesian robot prototype with 5-DOF robot arm for possible spinning applications at laboratory-level. Nova Scientia, 15(30), 1–24. https://doi.org/10.21640/ns.v15i30.3209

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.