Design, manufacture, and control motion of cartesian robot prototype with 5-DOF robot arm for possible spinning applications at laboratory-level


cartesian robot
robot arm
mechatronic systems
electronic elements
control algorithms robot cartesiano
brazo robótico
sistemas mecatrónicos
elementos electrónicos
algoritmos de control

How to Cite

Dena Aguilar, J. A. ., Delgado Flores, J. C., Acevedo Martínez, J., Velasco Gallardo, V. M. ., Zacarías Moreno, E. ., Martínez Delgado, E. J. ., & Escalante García, N. I. . (2023). Design, manufacture, and control motion of cartesian robot prototype with 5-DOF robot arm for possible spinning applications at laboratory-level. Nova Scientia, 15(30), 1–24.


This document presents the development of a prototype of a Cartesian robot with a 5 degrees-of-freedom articulated robot arm for possible applications in a wet spinning process at the laboratory-level. The mechatronic system was developed using various modular electronics elements compatible with an ArduinoTM Mega 2560 microcontroller. The control algorithm recognizes the position of the servomotors and the speed of the motors so that the prototype performs a complete cycle of displacement in 67 s, which includes the transport of a polymeric filament immersed in a coagulation bath for 10 s. A structural analysis indicates that there will be no tension failures because the maximum and axial stress of the Cartesian robot was 2.89 MPa while the von Mises tension of the robotic arm was 468 MPa, both tensions below their upper limits. The pulse signals, in the order of 4000 +25 ms, of the servomotors were consistent in 96-98% repeatability and 3-19% reproducibility. Forty percent of the extrusion tests performed were satisfactory, since the transport of a polymeric filament within a coagulant solution was achieved.


Dena-Aguilar, J. A., Jáuregui-Rincon, J, Bonilla-Petriciolet, A., Medina-Ramírez, I. E. & Romero-García, J. (2011). Graft copolymerization of poly(acrylonitrile) and vinyl acetate on starch via free radical in solution: synthesis and characterization. Afinidad, 68 (553), 195-202.

Dena-Aguilar, J. A., Zacarías-Moreno, E, Acevedo-Martínez, J., García-Vargas, F. & Moreno-Paredes, J. G. (2018). Diseño y construcción de un sistema de extrusión en frio de bajo volumen para la obtención de fibras poliméricas. Reporte técnico, Autor.

Fleischer, H., Drews, R. R., Janson, J., Patlolla, B. R. C., Chu, X., Klos, M. & Thurow, K. (2016). Application of a Dual-Arm robot in complex sample preparation and measurement processes. Journal of Laboratory Automation, 21(5), 671-681, doi: 10.1177/2211068216637352

He, Y., Du, E., Zhou, X., Zhou, J., He, Y., Ye, Y., Wang, J., Tang, B. & Wang, X. (2020). Wet-spinning of fluorescent fibers based on gold nanoclusters-loaded alginate for sensing of heavy metal ions and anti-counterfeiting. Spectrochim. Acta A Mol. Biomol. Spectrosc., 230, 118031. doi:

Käfferlein, H. U., Ferstl, C., Burkhart-Reichl, A., Hennebrüder, K., Drexler, H., Brüning, T. & Angerer, J. (2005). The use of biomarkers of exposure of N,N-dimethylformamide in health risk assessment and occupational hygiene in the polyacrylic fibre industry. Occup. Environ. Med., 62(5), 330-336. doi:

Minati, L., Yoshimura, N. & Koike, Y. (2016). Hybrid Control of a Vision-Guided Robot Arm by EOG, EMG, EEG Biosignals and Head Movement Acquired via a Consumer-Grade Wearable Device. IEEE Access, 4, 9528-9541. doi: 10.1109/ACCESS.2017.2647851

Pomberger, A., Jose, N., Walz, D., Meissner, J., Holze, C., Kopczynski, M., Müller-Bischof, P. & Lapkin, A.A. (2023). Automated pH Adjustment Driven by Robotic Workflows and Active Machine Learning. Chemical Engineering Journal, 451 (part 4), 2023, 139099,

Rahul, K., Raheman, H. & Paradkar, V. (2020). Design of a 4 DOF parallel robot arm and the firmware implementation on embedded system to transplant pot seedlings. Artificial Intelligence in Agriculture, 4, 172-183. doi:

Sepúlveda, D., Fernández, R., Navas, E., Armada, M. & González-De-Santos, P. (2020). Robotic Aubergine Harvesting Using Dual-Arm Manipulation. IEEE Access, 8, 121889-121904. doi: 10.1109/ACCESS.2020.3006919

Shah, R. & Pandey, A. B. (2018). Concept for Automated Sorting Robotic Arm. Procedia Manufacturing, 20, 400-405. doi:

Siemasz, A., Tomczuk, K. & Malecha, Z. (2020). 3D printed robotic arm with elements of artificial intelligence. Proceeds Computer Science, 176, 3741-3750. doi:

Tuntivivat, S. & Prempraneerach, P. (2011). Design and Construction and Motion Control of 6-Axis Robot Manipulator for Industrial Applications. The Second TSME International Conference on Mechanical Engineering, Krabi, Thailand, 19-21 October.

Yang, H.-S., Kim, Y.-M., Choi, H., Jang, J., Youk, J. H., Lee, B.-S. & Yu, W.-R. (2020). Electrochemical wet-spinning process for fabricating strong PAN fibers via an in situ induced plasticizing effect. Polymer, 202, 122641. doi:

Ye, H., Wang, J., Shi, J., Du, J., Zhou, Y., Huang, M. & Sun, B. (2021). Automatic and Intelligent Technologies of Solid-State Fermentation Process of Baijiu Production: Applications, Challenges, and Prospects. Foods, 10, 680. doi:

Yun, Y., Lee, S. J. & Kang, S. (2020). Motion Recognition-Based Robot Arm Control System Using Head Mounted Display. IEEE Access, 8, 15017-15026. doi: 10.1109/ ACCESS.2020.2964801

Zhang, B., Lu, C., Liu, Y., Zhou, P., Yu, Z. & Yuan, S. (2019). Wet spun polyacrylonitrile-based hollow-mesoporous fibers with different draw ratios. Polymer, 179, 121618. doi:

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Nova Scientia