Chitosan-fatty acids composite reduce Botrytis cinerea infection on post-harvest strawberry

Authors

  • Ma. Guadalupe Sandoval Flores Universidad de la Ciénega del Estado de Michoacán de Ocampo
  • Rafael Jiménez Mejía Universidad de la Ciénega del Estado de Michoacán de Ocampo
  • Gustavo Santoyo Universidad Michoacana de San Nicolás de Hidalgo
  • Patricia Nayeli Alva Murillo Universidad De Guanajuato
  • Joel Edmundo López Meza Universidad Michoacana de San Nicolás de Hidalgo
  • Pedro Damián Loeza Lara Universidad de la Ciénega del Estado de Michoacán de Ocampo

DOI:

https://doi.org/10.21640/ns.v10i21.1599

Keywords:

Chitosan, fatty acids, composite, Botrytis cinérea, Fragaria x ananassa

Abstract

Introduction: Grey mold is one of the main causes of post-harvest strawberry (Fragaria x ananassa Duch.) rot fruit, which is caused by Botrytis cinerea Pers.:fr fungus. The treatment with chemical fungicides is the main method for its control; however, its use cause health concerns and pollution. The above promote the research toward alternatives of control. The aim of the present research was to evaluate the chitosan-fatty acids composites effects on the B. cinerea infection in post-harvest strawberry fruits.

Method: In vitro bioassays were conducted to evaluate the chitosan, sodium octanoate and decanoic acid effect on the mycelial growth of B. cinerea. Likewise, in vivo bioassays were conducted to evaluate the compounds alone and in mixture effect on infection severity of grey mold in post-harvest strawberry fruits. The treatments were evaluated in a completely randomized design and the data were analyzed by means of analysis of variance (ANOVA) (p ≤ 0.05) and average comparison by Tukey´s test (p ≤ 0.05).

Results: The chitosan inhibited 100 % of the growth when it was applied in 10, 12.5 and 15 mg/mL concentrations, while the sodium octanoate reached the same inhibition percentage in 0.33 and 0.49 mg/mL concentrations. Finally, decanoic acid inhibited in 100 % to B. cinerea in 0.17, 0.34 and 0.51 mg/mL concentrations. In in vivo bioassays, the best results of strawberry fruits protection from B. cinerea infection were those in which the chitosan/sodium octanoate (12.5/0.49 y 15/0.49 mg/mL) were utilized, with absence of severity. Also highlight the chitosan (15 mg/mL), decanoic acid (0.51 mg/mL) and chitosan/decanoic acid composites (12.5/0.51 and 15/0.51 mg/mL) treatments, with severity degrees between 1 and 2.

Discussion or Conclusion: The chitosan, sodium octanoate and decanoic acid significantly inhibited the in vitro mycelial growth of B. cinerea. The chitosan/sodium octanoate composite have a greater protective effect of strawberry fruits, in relation to the compounds applied alone. The chitosan and decanoic acid presented a significantly protective effect of the fruits, applied alone as well as in composite. The above suggest that these compounds could be potentially used in the post-harvest control of B. cinerea.

Downloads

Download data is not yet available.

Author Biographies

Ma. Guadalupe Sandoval Flores, Universidad de la Ciénega del Estado de Michoacán de Ocampo

Licenciatura en Genómica Alimentaria, estudiante de Licenciatura

Rafael Jiménez Mejía, Universidad de la Ciénega del Estado de Michoacán de Ocampo

Licenciatura en Genómica Alimentaria, profesor e investigador

Gustavo Santoyo, Universidad Michoacana de San Nicolás de Hidalgo

Instituto de Investigaciones Químico-Biológicas, profesor e investigador titular

Patricia Nayeli Alva Murillo, Universidad De Guanajuato

Departamento de Biología, División de Ciencias Naturales y Exactas, profesora e investigadora titular

Joel Edmundo López Meza, Universidad Michoacana de San Nicolás de Hidalgo

Centro Multidisciplinario de Estudios en Biotecnología-FMVZ, profesor e investigador titular

Pedro Damián Loeza Lara, Universidad de la Ciénega del Estado de Michoacán de Ocampo

Licenciatura en Genómica Alimentaria, profesor e investigador titular

References

Bautista-Baños, S., Hernández-López, M., Bosquez-Molina, E., Wilson, C.L. 2003. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection, 22, 1087-1092.

Bautista-Baños, S., Hernández-Lauzardo, A.N., Velázques-del Valle, M.G., Hernández-López, M., Ait Barka, E., Bosquez-Molina, E., Wilson, C.L. 2006. Chitosan as a potential natural compound to control pre- and postharvest diseases of horticultural commodities. Crop protection, 25, 108-118.

Berger, L.R.R, Stamford, T.C.M., Stamford, N.P. 2011. Perspectivas para o uso da quitosana na agricultura. Revista Iberoamericana de Polímeros, 12, 195-215.

Botelho, R.V., Maia, A.J., Rickli, E.H., Leite, C.D., Faria, C.D.M.R. 2010. Quitosana no controle de Penicillium sp. na pós-colheita de mãs. Revista Brasileira de Agroecologia, 5, 200-206.

Darolt, F.C., Neto, A.C.R., Di Piero, R.M. (2016). Effects of the protective, curative, and eradi-cative applications of chitosan against Penicillium expansum in apples. Brazilian Journal of Microbiology, 47, 1014-1019.

Era, M., Sakai, S., Tanaka, A., Kawahara, T., Kanyama, T., Morita, H. 2015. Antifungal activity of fatty acid salts against Penicillium pinophilum. Japan Journal of Food Engineering, 16, 99-108.

Forbes-Hernández, T.Y., Gasparrini, M., Afrin, S., Cianciosi, D., González-Paramás, A.M., San-tos-Buelga, C., Mezzetti, B., Quiles, J.L., Battino, M., Giampieri, F., Bompadre, S. (2017). Strawberry (cv. Romina) methanolic extract and anthocyanin-enriched fraction improve li-pid profile and antioxidant status in HepG2 cells. International Journal of Molecular Sci-ences, 18, 1-17.

Giampieri, F., Forbes-Hernández, T.Y., Gasparrini, M., Alvarez-Suarez, J.M., Afrin, S., Bompadre, S., Quiles, J.L., Mezzetti, B., Battino, M. (2015). Strawberry as a health promoter: an evidence based Review. Food & Function, 6, 1386-1398.

Guo, Z., Chen, R., Xing, R., Liu, S., Yu, H., Wang, P., Li, C., Li, P. 2006. Novel derivates of chitosan and their antifungal activities in vitro. Carbohydrates Research, 341, 351-354.

Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L., Li, P. 2008. The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydrate Polymers, 71, 694-697.

Han, C., Zhao, Y., Leonard, S.W., Traber, M.G. 2004. Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria x ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33, 67-78.

Hernández-Muñoz, P., Almenar, E., Del Valle, V., Velez, D., Gavara, R. 2008. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria x ananas-sa) quality during refrigerated storage. Food Chemistry, 110, 428-435.

Kim, H.J., Soo, H.L., Choul, S.K., Eun, K.L., Ki, H.C., Hyung, G.K., Dae, W.K., Seon-Woo, L., Byung, J.M. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. Journal of Microbiology and Biotechnology, 17, 438-444.

Kong, M., Chen, X.G., Xing, K., Park, H.J. 2010. Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology, 44, 51-63.

Liu, J., Tiang, S., Meng, X., Xu, Y. 2007. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44, 300-306.

Liu, S., Weibin, R., Jing, L., Hua, X., Jingan, W., Yubao, G., Jingguo, W. 2008. Biological con-trol of phytopathogenic fungi by fatty acids. Mycopathology, 166, 93-102.

López-Mata, M.A., Ruiz-Cruz, S., Silva-Beltrán, N.P., Ornelas-Paz, J.J., Zamudio-Flores, P.B., Burruel-Ibarra, S.E. (2013). Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules, 18, 13735-13753.

Mahae, N., Chalat, C., Muhamud, P. (2011). Antioxidant and antimicrobial properties of chitosan-sugar complex. International Food Research Journal, 18, 1543-1551.

Moussa, S.H., Tayel, A.A., Alsohim, A.S., Abdallah, R.R. 2013. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. Journal of Food Science, 78, 1589-1594.

Muñoz, Z., Moret, A., Garcés, S. 2009. Assessment of chitosan for inhibition of Colletotrichum sp. on tomatoes and grapes. Crop Protection, 28, 36-40.

Pohl, C.H., Kock, L.F.J., Thibane, V.S. 2011. Antifungal free fatty acids: a review. In: Science against microbial pathogens: Communicating current research and technology advances. Méndez V.A., editor. p. 61-71.

Romanazzi, G., Feliziani, E., Satini, M., Landi, L. (2013). Effectiveness of postharvest treatment with chitosan and others resistance inducers in the control of storage decay of strawberry. Postharvest Biology and Technology, 75, 24-27.

Salgado-Garciglia, R., Molina-Torres, J., López-Meza, J.E., Loeza-Lara, P.D. 2008. Effect of crude extract and bioactive compounds of Heliopsis longipes on anthracnose incidence, mycorrizhation, and nodulation of bean. Agrociencia, 42, 679-688.

SIAP-SAGARPA (Servicio de Información Agroalimentaria y Pesquera. Secretaría de Agricultura, Ganadería, Pesca y Alimentación), 2016. Disponible de: http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalCultivo.do (consultado 31/01/2018).

Sylvain, L.S., Lucia, V.M., Elisabetta, G. 2009. Effect of α-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus. International Journal of Food Microbiol-ogy, 129, 288-294.

Sun, X., Wang, Z., Kadou, H., Zhou, K. (2014). The antimicrobial, mechanical, physical and structural properties of chitosan-gallic acid films. LWT-Food Science and Technology, 57, 83-89.

Verlee, A., Mincke, S., Stevens, C.V. (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers, 164, 268-283.

Weber, R.W.S. (2011). Resistance of Botrytis cinerea to multiple fungicides in northern German small-fruit production. Plant Disease, 95, 1263-1269.

Xi-Hui, L. y Joon-Hee, L. (2017). Antibiofilm agents: A new perpective for antimicrobial strategy. Journal of Microbiology, 55, 753-766.

Published

2018-10-12

How to Cite

Sandoval Flores, M. G., Jiménez Mejía, R., Santoyo, G., Alva Murillo, P. N., López Meza, J. E., & Loeza Lara, P. D. (2018). Chitosan-fatty acids composite reduce Botrytis cinerea infection on post-harvest strawberry. Nova Scientia, 10(21), 207–227. https://doi.org/10.21640/ns.v10i21.1599

Issue

Section

Natural Sciences and Engineering

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.