Digital images obtained by drone to estimate biomass yield in a grassland site in the state of Durango

Authors

DOI:

https://doi.org/10.21640/ns.v15i30.3174

Keywords:

prediction model, vegetal cover, supervised classification, CobCal, grassland, cattle, biomass, annual evaluation , productivity, vegetables

Abstract

The acquisition of high-resolution images by drones and their subsequent processing provides valuable information on biophysical variables of grassland vegetation. The objective of this study was to generate a prediction model of the annual productivity dynamics of a semi-arid grassland in northern Mexico through the estimated vegetation cover in digital photographs obtained by drone. A permanent sampling system was designed in the La Cieneguilla cattle ranch. The study variables measured were the direct cut biomass production as the dependent variable and the vegetation cover estimated in digital images acquired by drone as the independent variable. The number of samples collected for both variables was 640 during the year 2020. With 50% of the data, the prediction model was generated and with the other 50% of the data, the validation model, the adjusted regression models were the form Y = β0 + β1X + β2X2 with adjusted R2 = 71.64% and 69.90% respectively. This proposed methodology offers a non-destructive and accurate means for annual monitoring and evaluation of grasslands in dry areas.

Downloads

Download data is not yet available.

Author Biographies

Amaury Esquivel Romo, Antonio Narro Autonomous Agrarian University

Laguna Unit. Torreon, Coahuila, Mexico

Ulises Noel Gutierrez Guzmán, Juárez University of the State of Durango

Faculty of Agriculture and Zootechnics. Gomez Palacio, Durango, Mexico

Alejandro Moreno Reséndez, Antonio Narro Autonomous Agrarian University

Laguna Unit. Torreon, Coahuila, Mexico

Francisco Gerardo Veliz Deras, Antonio Narro Autonomous Agrarian University

Laguna Unit. Torreon, Coahuila, Mexico

Fernando Arellano Rodríguez, Antonio Narro Autonomous Agrarian University

Laguna Unit. Torreon, Coahuila, Mexico

Jorge Arturo Bustamante Andrade, Juárez University of the State of Durango

Faculty of Agriculture and Zootechnics. Gomez Palacio, Durango, Mexico

María Esther Rios Vega, Juárez University of the State of Durango

Faculty of Agriculture and Zootechnics. Gomez Palacio, Durango, Mexico

Apolinar González Mancilla, Juárez University of the State of Durango

Faculty of Agriculture and Zootechnics. Gomez Palacio, Durango, Mexico

References

Ancin-Murguzur, F.J., Taff, G., Davids, C., Tømmervik, H., Mølmann, J., Jørgensen, M. (2019). Yield Estimates by a Two-Step Approach Using Hyperspectral Methods in Grasslands at High Latitudes. Remote Sens., 11, 400. https://doi.org/10.3390/rs11040400

Barnetson, J., Phinn, S. y Scarth, P. (2020). Estimación de la biomasa y la calidad de los pastos vegetales a partir de imágenes de UAV en los pastizales de Queensland. AgriEngineering, 2 (4),523-543. https://doi.org/10.3390/agriengineering2040035

Barrachina, M., Cristóbal, J. and Tulla, A. F. (2015). Estimating above-ground biomass on mountain meadows and pastures through remote sensing, Int. J. Appl. Earth Obs. Geoinf., 38 184 –192. http://dx.doi.org/10.1016/j.jag.2014.12.002

Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S. and Bareth, G. (2014). Biomass estimation of barley using Crop Area Models (CSM) derived from UAV-based RGB images. Remote Sensing, 6(11), 10395–1041 https://doi.org/10.3390/rs61110395

Booth, D.T., Cox, S.E., Meikle, T.W. y Fitzgerald, C. (2006). The accuracy of ground-cover measurements. Rangeland Ecology & Management 59: 179-188. https://doi.org/10.2111/05-069R1.1

Búrquez, A. y Martínez-Yrizar A. (2011). Accuracy and bias on the estimation of aboveground biomass in the woody vegetation of the Sonoran Desert. Botany 89: 625-633. https://doi.org/10.1139/b11-050

Butt, B. M., Turner, D., Singh, A., Brottem, L. (2011). Use of MODIS NDVI to evaluate changing latitudinal gradients of rangeland phenology in Sudano-Sahelian West Africa. Remote Sensing of Environment 115(12):3367–3376. https://doi.org/10.1016/j.rse.2011.08.001

Byrne, K.M., Lauenroth, W.K., Adler, P.B. y Byrne, C.M. (2011). Estimating aboveground net primary production in grasslands: a comparison of nondestructive methods. Rangeland Ecology & Management 64: 498-505. https://doi.org/10.2111/REM-D-10-00145.1

Chávez, C. E., Paz P. F., y Bolaños G. M. A. (2017). Estimation of biomass and aerial cover using radiometry and digital images at the field level in grasslands and shrublands. Terra Latinoamericana, 35(3), 247-257. https://doi.org/10.28940/terra.v35i3.133

Chen, Z., Shao, Q., Liu, J., Wang, J. (2012). Analysis of net primary productivity of terrestrial vegetation on the Qinghai-Tibet Plateau, based on MODIS remote sensing data. Science China Earth Sciences 55(8):1306–1312. https://link.springer.com/article/10.1007/s11430-012-4389-0

Chou, Y., Polansky, A.M. y Mason, R.L. (1998). Transforming Nonnormal Data to Normality in Statistical Process Control. Journal of Quality Technology, 30, 133–141. https://doi.org/10.1080/00224065.1998.11979832

Cong, N., Piao, S.L., Chen, A.P., Wang, X.H., Lin, S.P., Chen, S.J., Han, G.S., Zhou, X.P, Zhang. (2012). Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis. Agricultural and Forest Meteorology 165:104–113. https://doi.org/10.1016/j.agrformet.2012.06.009

Cooper, S., Roy, D., Schaaf, C., Paynter, I. (2017). Examination of the potential of terrestrial laser scanning and structure-from-motion photogrammetry for rapid nondestructive field measurement of grass biomass. Remote Sens. 9, 531. https://doi.org/10.3390/rs9060531

Espinoza, C., Aguilar, A.L., Martínez, E., Gómez L. y Loa E. (2000). Regiones terrestres prioritarias de México. Comisión Nacional para el Conocimiento y uso de la biodiversidad (CONABIO). México, DF. http://www.conabio.gob.mx/conocimiento/regionalizacion/doctos/terrestres.html

Everson, T.M., Clarke, G.P.Y. & Everson, C.S. (1990). Precision in monitoring plant species composition in montane grasslands. Vegetation 88, 135–141 1990. https://link.springer.com/article/10.1007/BF00044830

Ferrari, D.M., Pozzolo, O.R. & Ferrari, H.J. (2009). CobCal, software for vegetation cover estimation. National Institute of Agricultural Technology, EEA Concepción del Uruguay, Entre Ríos, Argentina. https://www.produccion-animal.com.ar/software/02-cobertura_vegetal.pdf

Flombaum, P. y Sala, O.E. (2007). A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. Journal of Arid Environments 69: 352-358. https://doi.org/10.1016/j.jaridenv.2006.09.008

Gillan, J. K., McClaran, M. P. T., Swetnam, L. y Heilman, P. (2019). Estimating Forage Utilization with Drone-Based Photogrametric Point Clouds. Rangeland Ecology and Management 72(4), 575-585. https://doi.org/10.1016/j.rama.2019.02.009

Grüner, E., Astor, T. y Wachendorf, M. (2019). Predicción de biomasa de pastizales templados heterogéneos utilizando un enfoque SfM basado en imágenes de UAV. Agronomía, 9 (2), 54. https://doi.org/10.3390/agronomy9020054

Habel, J. C., Dengler, J., Janišová, M., Török, P., Wellstein, C. y Wiezik, M. (2013). European grassland ecosystems: threatened hotspots of biodiversity. Biodiversity and Conservation, 22(10), 2131-2138. https://link.springer.com/article/10.1007/s10531-013-0537-x

Hernández, M. L. A., Medina, C. N., Cabada, T. C. A., Avalos, C. R. (2019). Avances en la aplicación del NDVI para el monitoreo de la biomasa forrajera en un matorral arbocrasicaulescente asociado con pasto buffel. Campo Experimental Todos Santos, CIRNO, INIFAP. https://smcsmx.org/files/2022/Si_el_suelo_respira_tu_respiras.pdf

Lagos, I. J. y Vargas, J. A. (2003). Sistema de familias de distribuciones de Johnson, una alternativa para el manejo de datos no normales en cartas de control. Revista Colombiana de Estadística, 26(1), 25-40. http://dx.doi.org/10.15446/rce

Lemaire, G., Hodgson, J. y Chabbi, A. (2011). Grassland productivity and ecosystem services. Cabi. https://www.cabi.org/bookshop/book/9781845938093/

Lussem, U., Bolten, A., Gnyp, M.L., Jasper, J. & Bareth, G. (2018). Evaluation of RGB-based vegetation indices from UAV images to estimate forage yield in grasslands. Remote Sens Spatial Inf Sci, 42, 1215-1219. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3/1215/2018/isprs-archives-XLII-3-1215-2018.pdf

MacDonald, R.L., Burke, J.M., Chen, H.Y.H. y Prepas, E.E. 2012. Relationship between aboveground biomass and percent cover of ground vegetation in Canadian boreal plain riparian forests. Forest Science 58: 47-53. https://doi.org/10.5849/forsci.10-129

Marrone, L. A. 2017. Caracterización de tráfico-distribución de Johnson SB. In XXIII Congreso Argentino de Ciencias de la Computación. La Plata. http://sedici.unlp.edu.ar/bitstream/handle/10915/63947/Documento_completo.pdf?sequence=1&isAllowed=y

Marsett, R.C., Qi, J., Heilman, P., Sharon, H., Biedenbender, M., Watson, C., Amer S., Weltz, M., Goodrich, D. y Marsett, R. (2006). Remote Sensing for Grassland Management in the Arid Southwest. Rangeland Ecology and Management 59: 530–540. https://doi.org/10.2111/05-201R.1

Moreno, G. C. A., Schellberg, J., Ewert, F., Bruser K., Canales-Prati, P., Linstadter, A., Oomen R. J., Ruppert, J. C. & Perelman, S. B. (2014). Response of community-aggregated plant functional traits along grazing gradients: insights from African semi-arid grasslands Applied Vegetation Science. 17 470–481. https://doi.org/10.1111/avsc.12092

Morgan, H. R., Reid, N., & Hunter, J. T. (2017). Estimation of aboveground herbaceous biomass using visually ranked digital photographs. The Rangeland Journal, 40(1), 9-18. https://doi.org/10.1071/RJ17033

Nafus, A.M., McClaran, M.P., Archer, S.R. y Throop, H.L. (2009). Multispecies allometric models to predict grass biomass in semidesert rangeland. Rangeland Ecology & Management 62: 68-72. https://doi.org/10.2111/08-003

Neter, J., Kutner, M.H., Nachtsheim, C.J. y Wasserman, W. (1996). Applied linear regression models. 3rd ed. Irwin Inc. Chicago IL.720 p.

Oliveras, I., Eynden, M.V.D., Malhi, Y., Cahuana, N., Menor, C., Zamora, F. y Haugaasen, T. (2013). Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands. Austral Ecology 39: 408-415. https://doi.org/10.1111/aec.12098

Parr, C. L., Lehmann, C. E., Bond, W. J., Hoffmann, W. A., & Andersen, A. N. 2014. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends in ecology & evolution, 29(4), 205-213. https://doi.org/10.1016/j.tree.2014.02.004

Possoch, M., Bieker, S., Hoffmeister, D., Bolten, A., Schellberg, J., Bareth, G. (2016). Multi-temporal crop surface models combined with the RGB vegetation index from UAV-based images for forage monitoring in grassland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 41, 991–998. https://doi:10.5194/isprsarchives-XLI-B1-991-2016

Sorensen, G.E., Wester, D.B. y Rideout-Hanzak, S. (2012). A nondestructive method to estimate standing crop of purple threeawn and blue grama. Rangeland Ecology & Management 65: 538-542. https://doi.org/10.2111/REM-D-11-00227.1

Symstad, A. J., Cody L., Wienk, and Andy D. Thorstenson. (2008). Precision, Repeatability, and Efficiency of Two Canopy-Cover Estimate Methods in Northern Great Plains Vegetation, Rangeland Ecology and Management 61(4), 419-429. https://doi.org/10.2111/08-010.1

Teague, R., Provenza, F., Kreuter, U., Steffens, T., Barnes, M. (2013). Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? Journal of Environmental Management. 128: 699-717. https://doi.org/10.1016/j.jenvman.2013.05.064

Tsutsumi, M., Itano, S. and Shiyomi, M. (2007). Number of Samples Required for Estimating Herbaceous Biomass. Rangeland Ecology and Management 60: 447-452. https://doi.org/10.2111/1551-5028(2007)60[447:NOSRFE]2.0.CO,2

Vanamburg, L.K., Trlica, M.J., Hoffer, R.M. and Weltz, M.A. (2006). Terrestrial digital images for grassland biomass estimation. International Journal of Remote Sensing, 27(05), 939-950. http://dx.doi.org/10.1080/01431160500114789

Viljanen, N., Honkavaara, E., Näsi, R., Hakala, T., Niemeläinen, O., Kaivosoja, J. A. (2018). Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone. Agriculture, 8, 70. https://doi.org/10.3390/agriculture8050070

Wang, D., Xin, X., Shao, Q., Brolly, M., Zhu, Z., Chen, J. (2017). Modeling aboveground biomass in hulunber grassland ecosystem by using unmanned aerial vehicle discrete lidar. Sensors. 17, 180. https://doi.org/10.3390/s17010180

Xiaoke, Zhang., Xuyang, Lu., Xiaodan, Wang. (2013). Spatial-temporal variation of NDVI of different classes and groups of alpine grasslands in northern Tibet, Mountain Research and Development, 35(3), 254-263. https://doi.org/10.1659/MRD-JOURNAL-D-14-00110.1

Zhang, H., Sun, Y., Chang, L., Qin, Y., Chen, J., Qin, Y., Du, J., Yi, S., Wang, Y. (2018). Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sens. 10, 851. https://doi.org/10.3390/rs10060851

Published

2023-05-31

How to Cite

Esquivel Romo, A., Gutierrez Guzmán, U. N., Moreno Reséndez, A. ., Veliz Deras, F. G. ., Arellano Rodríguez, F., Bustamante Andrade, J. A. ., … González Mancilla, A. . (2023). Digital images obtained by drone to estimate biomass yield in a grassland site in the state of Durango. Nova Scientia, 15(30), 1–14. https://doi.org/10.21640/ns.v15i30.3174

Issue

Section

Natural Sciences and Engineering

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.