Digital images obtained by drone to estimate biomass yield in a grassland site in the state of Durango
DOI:
https://doi.org/10.21640/ns.v15i30.3174Keywords:
prediction model, vegetal cover, supervised classification, CobCal, grassland, cattle, biomass, annual evaluation , productivity, vegetablesAbstract
The acquisition of high-resolution images by drones and their subsequent processing provides valuable information on biophysical variables of grassland vegetation. The objective of this study was to generate a prediction model of the annual productivity dynamics of a semi-arid grassland in northern Mexico through the estimated vegetation cover in digital photographs obtained by drone. A permanent sampling system was designed in the La Cieneguilla cattle ranch. The study variables measured were the direct cut biomass production as the dependent variable and the vegetation cover estimated in digital images acquired by drone as the independent variable. The number of samples collected for both variables was 640 during the year 2020. With 50% of the data, the prediction model was generated and with the other 50% of the data, the validation model, the adjusted regression models were the form Y = β0 + β1X + β2X2 with adjusted R2 = 71.64% and 69.90% respectively. This proposed methodology offers a non-destructive and accurate means for annual monitoring and evaluation of grasslands in dry areas.
Downloads
References
Ancin-Murguzur, F.J., Taff, G., Davids, C., Tømmervik, H., Mølmann, J., Jørgensen, M. (2019). Yield Estimates by a Two-Step Approach Using Hyperspectral Methods in Grasslands at High Latitudes. Remote Sens., 11, 400. https://doi.org/10.3390/rs11040400
Barnetson, J., Phinn, S. y Scarth, P. (2020). Estimación de la biomasa y la calidad de los pastos vegetales a partir de imágenes de UAV en los pastizales de Queensland. AgriEngineering, 2 (4),523-543. https://doi.org/10.3390/agriengineering2040035
Barrachina, M., Cristóbal, J. and Tulla, A. F. (2015). Estimating above-ground biomass on mountain meadows and pastures through remote sensing, Int. J. Appl. Earth Obs. Geoinf., 38 184 –192. http://dx.doi.org/10.1016/j.jag.2014.12.002
Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S. and Bareth, G. (2014). Biomass estimation of barley using Crop Area Models (CSM) derived from UAV-based RGB images. Remote Sensing, 6(11), 10395–1041 https://doi.org/10.3390/rs61110395
Booth, D.T., Cox, S.E., Meikle, T.W. y Fitzgerald, C. (2006). The accuracy of ground-cover measurements. Rangeland Ecology & Management 59: 179-188. https://doi.org/10.2111/05-069R1.1
Búrquez, A. y Martínez-Yrizar A. (2011). Accuracy and bias on the estimation of aboveground biomass in the woody vegetation of the Sonoran Desert. Botany 89: 625-633. https://doi.org/10.1139/b11-050
Butt, B. M., Turner, D., Singh, A., Brottem, L. (2011). Use of MODIS NDVI to evaluate changing latitudinal gradients of rangeland phenology in Sudano-Sahelian West Africa. Remote Sensing of Environment 115(12):3367–3376. https://doi.org/10.1016/j.rse.2011.08.001
Byrne, K.M., Lauenroth, W.K., Adler, P.B. y Byrne, C.M. (2011). Estimating aboveground net primary production in grasslands: a comparison of nondestructive methods. Rangeland Ecology & Management 64: 498-505. https://doi.org/10.2111/REM-D-10-00145.1
Chávez, C. E., Paz P. F., y Bolaños G. M. A. (2017). Estimation of biomass and aerial cover using radiometry and digital images at the field level in grasslands and shrublands. Terra Latinoamericana, 35(3), 247-257. https://doi.org/10.28940/terra.v35i3.133
Chen, Z., Shao, Q., Liu, J., Wang, J. (2012). Analysis of net primary productivity of terrestrial vegetation on the Qinghai-Tibet Plateau, based on MODIS remote sensing data. Science China Earth Sciences 55(8):1306–1312. https://link.springer.com/article/10.1007/s11430-012-4389-0
Chou, Y., Polansky, A.M. y Mason, R.L. (1998). Transforming Nonnormal Data to Normality in Statistical Process Control. Journal of Quality Technology, 30, 133–141. https://doi.org/10.1080/00224065.1998.11979832
Cong, N., Piao, S.L., Chen, A.P., Wang, X.H., Lin, S.P., Chen, S.J., Han, G.S., Zhou, X.P, Zhang. (2012). Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis. Agricultural and Forest Meteorology 165:104–113. https://doi.org/10.1016/j.agrformet.2012.06.009
Cooper, S., Roy, D., Schaaf, C., Paynter, I. (2017). Examination of the potential of terrestrial laser scanning and structure-from-motion photogrammetry for rapid nondestructive field measurement of grass biomass. Remote Sens. 9, 531. https://doi.org/10.3390/rs9060531
Espinoza, C., Aguilar, A.L., Martínez, E., Gómez L. y Loa E. (2000). Regiones terrestres prioritarias de México. Comisión Nacional para el Conocimiento y uso de la biodiversidad (CONABIO). México, DF. http://www.conabio.gob.mx/conocimiento/regionalizacion/doctos/terrestres.html
Everson, T.M., Clarke, G.P.Y. & Everson, C.S. (1990). Precision in monitoring plant species composition in montane grasslands. Vegetation 88, 135–141 1990. https://link.springer.com/article/10.1007/BF00044830
Ferrari, D.M., Pozzolo, O.R. & Ferrari, H.J. (2009). CobCal, software for vegetation cover estimation. National Institute of Agricultural Technology, EEA Concepción del Uruguay, Entre Ríos, Argentina. https://www.produccion-animal.com.ar/software/02-cobertura_vegetal.pdf
Flombaum, P. y Sala, O.E. (2007). A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. Journal of Arid Environments 69: 352-358. https://doi.org/10.1016/j.jaridenv.2006.09.008
Gillan, J. K., McClaran, M. P. T., Swetnam, L. y Heilman, P. (2019). Estimating Forage Utilization with Drone-Based Photogrametric Point Clouds. Rangeland Ecology and Management 72(4), 575-585. https://doi.org/10.1016/j.rama.2019.02.009
Grüner, E., Astor, T. y Wachendorf, M. (2019). Predicción de biomasa de pastizales templados heterogéneos utilizando un enfoque SfM basado en imágenes de UAV. Agronomía, 9 (2), 54. https://doi.org/10.3390/agronomy9020054
Habel, J. C., Dengler, J., Janišová, M., Török, P., Wellstein, C. y Wiezik, M. (2013). European grassland ecosystems: threatened hotspots of biodiversity. Biodiversity and Conservation, 22(10), 2131-2138. https://link.springer.com/article/10.1007/s10531-013-0537-x
Hernández, M. L. A., Medina, C. N., Cabada, T. C. A., Avalos, C. R. (2019). Avances en la aplicación del NDVI para el monitoreo de la biomasa forrajera en un matorral arbocrasicaulescente asociado con pasto buffel. Campo Experimental Todos Santos, CIRNO, INIFAP. https://smcsmx.org/files/2022/Si_el_suelo_respira_tu_respiras.pdf
Lagos, I. J. y Vargas, J. A. (2003). Sistema de familias de distribuciones de Johnson, una alternativa para el manejo de datos no normales en cartas de control. Revista Colombiana de Estadística, 26(1), 25-40. http://dx.doi.org/10.15446/rce
Lemaire, G., Hodgson, J. y Chabbi, A. (2011). Grassland productivity and ecosystem services. Cabi. https://www.cabi.org/bookshop/book/9781845938093/
Lussem, U., Bolten, A., Gnyp, M.L., Jasper, J. & Bareth, G. (2018). Evaluation of RGB-based vegetation indices from UAV images to estimate forage yield in grasslands. Remote Sens Spatial Inf Sci, 42, 1215-1219. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3/1215/2018/isprs-archives-XLII-3-1215-2018.pdf
MacDonald, R.L., Burke, J.M., Chen, H.Y.H. y Prepas, E.E. 2012. Relationship between aboveground biomass and percent cover of ground vegetation in Canadian boreal plain riparian forests. Forest Science 58: 47-53. https://doi.org/10.5849/forsci.10-129
Marrone, L. A. 2017. Caracterización de tráfico-distribución de Johnson SB. In XXIII Congreso Argentino de Ciencias de la Computación. La Plata. http://sedici.unlp.edu.ar/bitstream/handle/10915/63947/Documento_completo.pdf?sequence=1&isAllowed=y
Marsett, R.C., Qi, J., Heilman, P., Sharon, H., Biedenbender, M., Watson, C., Amer S., Weltz, M., Goodrich, D. y Marsett, R. (2006). Remote Sensing for Grassland Management in the Arid Southwest. Rangeland Ecology and Management 59: 530–540. https://doi.org/10.2111/05-201R.1
Moreno, G. C. A., Schellberg, J., Ewert, F., Bruser K., Canales-Prati, P., Linstadter, A., Oomen R. J., Ruppert, J. C. & Perelman, S. B. (2014). Response of community-aggregated plant functional traits along grazing gradients: insights from African semi-arid grasslands Applied Vegetation Science. 17 470–481. https://doi.org/10.1111/avsc.12092
Morgan, H. R., Reid, N., & Hunter, J. T. (2017). Estimation of aboveground herbaceous biomass using visually ranked digital photographs. The Rangeland Journal, 40(1), 9-18. https://doi.org/10.1071/RJ17033
Nafus, A.M., McClaran, M.P., Archer, S.R. y Throop, H.L. (2009). Multispecies allometric models to predict grass biomass in semidesert rangeland. Rangeland Ecology & Management 62: 68-72. https://doi.org/10.2111/08-003
Neter, J., Kutner, M.H., Nachtsheim, C.J. y Wasserman, W. (1996). Applied linear regression models. 3rd ed. Irwin Inc. Chicago IL.720 p.
Oliveras, I., Eynden, M.V.D., Malhi, Y., Cahuana, N., Menor, C., Zamora, F. y Haugaasen, T. (2013). Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands. Austral Ecology 39: 408-415. https://doi.org/10.1111/aec.12098
Parr, C. L., Lehmann, C. E., Bond, W. J., Hoffmann, W. A., & Andersen, A. N. 2014. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends in ecology & evolution, 29(4), 205-213. https://doi.org/10.1016/j.tree.2014.02.004
Possoch, M., Bieker, S., Hoffmeister, D., Bolten, A., Schellberg, J., Bareth, G. (2016). Multi-temporal crop surface models combined with the RGB vegetation index from UAV-based images for forage monitoring in grassland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 41, 991–998. https://doi:10.5194/isprsarchives-XLI-B1-991-2016
Sorensen, G.E., Wester, D.B. y Rideout-Hanzak, S. (2012). A nondestructive method to estimate standing crop of purple threeawn and blue grama. Rangeland Ecology & Management 65: 538-542. https://doi.org/10.2111/REM-D-11-00227.1
Symstad, A. J., Cody L., Wienk, and Andy D. Thorstenson. (2008). Precision, Repeatability, and Efficiency of Two Canopy-Cover Estimate Methods in Northern Great Plains Vegetation, Rangeland Ecology and Management 61(4), 419-429. https://doi.org/10.2111/08-010.1
Teague, R., Provenza, F., Kreuter, U., Steffens, T., Barnes, M. (2013). Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? Journal of Environmental Management. 128: 699-717. https://doi.org/10.1016/j.jenvman.2013.05.064
Tsutsumi, M., Itano, S. and Shiyomi, M. (2007). Number of Samples Required for Estimating Herbaceous Biomass. Rangeland Ecology and Management 60: 447-452. https://doi.org/10.2111/1551-5028(2007)60[447:NOSRFE]2.0.CO,2
Vanamburg, L.K., Trlica, M.J., Hoffer, R.M. and Weltz, M.A. (2006). Terrestrial digital images for grassland biomass estimation. International Journal of Remote Sensing, 27(05), 939-950. http://dx.doi.org/10.1080/01431160500114789
Viljanen, N., Honkavaara, E., Näsi, R., Hakala, T., Niemeläinen, O., Kaivosoja, J. A. (2018). Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone. Agriculture, 8, 70. https://doi.org/10.3390/agriculture8050070
Wang, D., Xin, X., Shao, Q., Brolly, M., Zhu, Z., Chen, J. (2017). Modeling aboveground biomass in hulunber grassland ecosystem by using unmanned aerial vehicle discrete lidar. Sensors. 17, 180. https://doi.org/10.3390/s17010180
Xiaoke, Zhang., Xuyang, Lu., Xiaodan, Wang. (2013). Spatial-temporal variation of NDVI of different classes and groups of alpine grasslands in northern Tibet, Mountain Research and Development, 35(3), 254-263. https://doi.org/10.1659/MRD-JOURNAL-D-14-00110.1
Zhang, H., Sun, Y., Chang, L., Qin, Y., Chen, J., Qin, Y., Du, J., Yi, S., Wang, Y. (2018). Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sens. 10, 851. https://doi.org/10.3390/rs10060851
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nova Scientia

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Conditions for the freedom of publication: the journal, due to its scientific nature, must not have political or institutional undertones to groups that are foreign to the original objective of the same, or its mission, so that there is no censorship derived from the rigorous ruling process.
Due to this, the contents of the articles will be the responsibility of the authors, and once published, the considerations made to the same will be sent to the authors so that they resolve any possible controversies regarding their work.
The complete or partial reproduction of the work is authorized as long as the source is cited.