Mass transfer analysis in dual continuum models for biofiltration of volatile organic compounds (VOC’s)

Authors

  • Martha Patricia Calderón Alvarado Instituto Tecnológico de Celaya
  • Juan Manuel Oliveros Muñoz Instituto Tecnológico de Celaya
  • Margarita Mercedes González Brambila Universidad Autónoma Metropolitana, Azcapotzalco
  • Gloria María Martinez González Instituto Tecnológico de Celaya
  • Hugo Jiménez Islas Instituto Tecnológico de Celaya

DOI:

https://doi.org/10.21640/ns.v10i20.1282

Keywords:

biofiltration, mass transfer, rupture curve, microbial growth

Abstract

The present work explores and discusses the derivation and application of a generic mathematical model (Multiple Continuum Interacting Model, MCIM) in the prediction of the effectiveness dynamics for a trickling biofilter treating toluene. A computational solution strategy is presented, including the proper validation study case. Then, numerical studies for dimensionless Péclet and Sherwood numbers (Pe and Sh) are discussed; the effect of these over the efficiency biofilter behavior is shown. For Two Interacting Continuum phases (TIC), three sophistication levels are compared, concluding that the growth phenomenon (including the inoculation process) is crucial for designing and modelling of biofiltrations systems by MIMC’s. Achieving with MDC 2 an ER< 8% being the approach that comes closest to the experimental data reported in literature.

Downloads

Download data is not yet available.

References

Abumaizar, R.J., Smith, E.H., Kocher, W. (1997). Analytical model of dual-media biofilter for removal of organic air pollutants. Journal of environmental engineering. 123(6), 606-614. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(606)

Aizpuru, A., Malhautier, L., Fanlo, J.L. (2002). Quantitative structure-activity relationship modeling of biofiltration removal. Journal of environmental engineering. 128(10), 953-959. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:10(953)

April, T.M., Abbott, S.P., Foght, J.M., Currah, R.S. (1998). Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (microascacea). Canadian Journal of Microbilogy. 44(3), 270-278. https://doi.org/10.1139/w97-152

Alonso, C., Suidan, M.T., Kim, B.R., Kim, B.J. (1998). Dynamic mathematical model for the biodegradation of VOCs in a biofilter: biomass accumulation study. Environmental science & technology. 32(20), 3118-3123. DOI: 10.1021/es9711021

Alonso, C., Zhu, X., Suidan, M.T., Kim, B.R., Kim, B.J. (2001). Mathematical model of biofiltration of VOCs: effect of nitrate concentration and backwashing. Journal of environmental engineering. 127(7), 655-664. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:7(655)

Baquerizo, G., Maestre, J.P., Sakuma, T., Deshusses, M.A., Gamisans, X., Gabriel, D., Lafuente, J. (2005). A detailed model of a biofilter for ammonia removal: model parameters analysis and model validation. Chemical Engineering Journal. 113(2), 205-214. https://doi.org/10.1016/j.cej.2005.03.003

Bird, R.B. (2002). Transport phenomena. Applied Mechanics Reviews. 55(1), R1-R4. doi:10.1115/1.1424298

Boraey, M.A., Guaily, A., Epstein, M. (2015). A hybrid model for biofilm growth on a deformable substratum. The Canadian Journal of Chemical Engineering. 93(5), 789-797. DOI: 10.1002/cjce.22172

Bouchez, M., Blanchet, D., Vandecasteele, J.P. (1995). Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Applied Microbiology and Biotechnology. 43(1), 156-164. https://link.springer.com/article/10.1007%2FBF00170638?LI=true

Calderón-Alvarado, M.P., Alvarado-Orozco, J.M., Herrera-Hernández, E.C., Martínez-González, G.M., Miranda-López, R., Jiménez-Islas, H. (2016). Effect of two viscosity models on lethality estimation in sterilization of liquid canned foods. Revista de Agaroquimica y Tecnologia de Alimentos, 22(6), 496-515. DOI: 10.1177/1082013215627393.

Chen, J., Jiang, Y., Chen, J., Sha, H., Zhang, W. (2009). Dynamic model for nitric oxide removal by a rotating drum biofilter. Journal of hazardous materials. 168(2), 1047-1052. https://doi.org/10.1016/j.jhazmat.2009.02.159

Delay, F., Porel, G., Chatelier, M. (2013). A dual flowing continuum approach to model denitrification experiments in porous media colonized by biofilms. Journal of contaminant hydrology. 150, 12-24. https://doi.org/10.1016/j.jconhyd.2013.04.001

Deshusses, M.A., Hamer, G., Dunn, I.J. (1995). Behavior of biofilters for waste air biotreatment. I: Dynamic model development. Environmental Science & Technology. 29(4), 1048-1058. http://cat.inist.fr/?aModele=afficheN&cpsidt=3601446

Devinny, J.S., Deshusses, M.A., Webster, T.S. (1998). Biofiltration for air pollution control. CRC press.

Devinny, J.S., Ramesh, J. (2005). A phenomenological review of biofilter models. Chemical Engineering Journal. 113(2), 187-196. https://doi.org/10.1016/j.cej.2005.03.005

De Vahl Davis, G. (1983). Natural convection of air in a square cavity: a bench mark numerical solution. International Journal for numerical methods in fluids. 3(3), 249-264. DOI: 10.1002/fld.1650030305

De Visscher, A., Van Cleemput, O. (2003). Simulation model for gas diffusion and methane oxidation in landfill cover soils. Waste Management. 23(7), 581-591. https://doi.org/10.1016/S0956-053X(03)00096-5

Duddu, R., Chopp, D.L., Moran, B. (2009). A two‐dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnology and bioengineering. 103(1), 92-104. DOI: 10.1002/bit.22233

Eberl, H.J., Parker, D.F., Van Loosdrecht, M. (2001). A new deterministic spatio-temporal continuum model for biofilm development. Computational and Mathematical Methods in Medicine. 3(3), 161-175. http://dx.doi.org/10.1080/10273660108833072

Friedman, A., Hu, B., Xue, C. (2014). On a multiphase multicomponent model of biofilm growth. Archive for rational mechanics and analysis. 211(1), 257-300 https://link.springer.com/article/10.1007/s00205-013-0665-1

Golfier, F., Wood, B.D., Orgogozo, L., Quintard, M., Buès, M. (2009). Biofilms in porous media: development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions. Advances in water resources. 32(3), 463-485. https://doi.org/10.1016/j.advwatres.2008.11.012

Hao, Y., Fu, P., Carrigan, C.R. (2013). Application of a dual-continuum model for simulation of fluid flow and heat transfer in fractured geothermal reservoirs. In Proceedings, 38th Workshop on Geothermal Reservoir Engineering. vol SGP-TR-198. Stanford University, Stanford, California (pp. 462-469).

Hartmans, S., Tramper, J. (1991). Dichloromethane removal from waste gases with a trickle-bed bioreactor. Bioprocess and Biosystems Engineering. 6(3), 83-92. https://link.springer.com/article/10.1007%2FBF00369060?LI=true

Hasan, S.D., Costa, J.A., Sanzo, A.V. (1998). Heat transfer simulation of solid state fermentation in a packed-bed bioreactor. Biotechnology Techniques. 12(10), 787-791. https://doi.org/10.1023/A:1008887828569

Hirai, M., Ohtake, M., Shoda, M. (1990). Removal kinetics of hydrogen sulfide, methanethiol and dimethyl sulfide by peat biofilters. Journal of Fermentation and Bioengineering. 70(5), 334-339. https://doi.org/10.1016/0922-338X(90)90145-M

Hodge, D.S., Devinny, J.S. (1994). Biofilter treatment of ethanol vapors. Environmental Progress & Sustainable Energy. 13(3), 167-173. DOI: 10.1002/ep.670130311

Hodge, D.S., Devinny, J.S. (1995). Modeling removal of air contaminants by biofiltration. Journal of Environmental Engineering. 121(1), 21-32. https://doi.org/10.1016/j.bej.2004.02.007

Hwang, S.J., Tang, H.M. (1997). Kinetic behavior of the toluene biofiltration process. Journal of the Air & Waste Management Association. 47(6), 664-673. http://dx.doi.org/10.1080/10473289.1997.10463926

Iliuta, I., Larachi, F. (2004). Biomass accumulation and clogging in trickle‐bed bioreactors. AIChE journal. 50(10), 2541-2551. DOI: 10.1002/aic.10201

Jennings, P.A., Snoeyink, V.L., Chian, E.S.K. (1976). Theoretical model for a submerged biological filter. Biotechnology and Bioengineering. 18(9), 1249-1273. DOI: 10.1002/bit.260180906

Jiménez-Islas, H., (1999). Modelamiento matemático de los procesos de transferencia de momentum, calor y masa en medios porosos. Tesis doctoral. Universidad Autónoma Metropolitana, Unidad Iztapalapa. CDMX, México.

Jorio, H., Payre, G., Heitz, M. (2003). Mathematical modeling of gas‐phase biofilter performance. Journal of Chemical Technology and Biotechnology. 78(7), 834-846. DOI: 10.1002/jctb.835

Klapper, I., Dockery, J. (2010). Mathematical description of microbial biofilms. Society for Industrial and Applied Mathematics (SIAM) review. 52(2), 221-265. https://doi.org/10.1137/080739720

Leson, G., Winter, A.M. (1991). Biofiltration: an innovative air pollution control technology for VOC emissions. Journal of the Air & Waste Management Association. 41(8), 1045–1054. http://dx.doi.org/10.1080/10473289.1991.10466898

Li, G.Q., Visscher, A.D. (2008). Toluene removal biofilter modeling. Journal of the Air & Waste Management Association. 58(7), 947-956. http://www.tandfonline.com/doi/abs/10.3155/1047-3289.58.7.947

Liao, Q., Tian, X., Chen, R., Zhu, X. (2008). Mathematical model for gas–liquid two-phase flow and biodegradation of a low concentration volatile organic compound (VOC) in a trickling biofilter. International Journal of Heat and Mass Transfer. 51(7), 1780-1792. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.007

Malhautier, L., Khammar, N., Bayle, S., Fanlo, J.L. (2005). Biofiltration of volatile organic compounds. Applied microbiology and biotechnology. 68(1), 16-22. https://link.springer.com/article/10.1007/s00253-005-1960-z

Mysliwiec, M.J., VanderGheynst, J.S., Rashid, M.M., Schroeder, E.D. (2001). Dynamic volume‐averaged model of heat and mass transport within a compost biofilter: I. Model development. Biotechnology and bioengineering. 73(4), 282-294. DOI: 10.1002/bit.1061

Nielsen, P.H., Daims, H., Lemmer, H., Arslan-Alaton, I., Olmez-Hanci, T. (Eds.). (2009). FISH handbook for biological wastewater treatment. Iwa publishing. Identification and quantification of microorganisms in activated sludge and biofilms. 25–31.

Oliveros-Muñoz, J.M., Calderón-Alvarado, M.P., Martínez-González, G.M., Navarrete-Bolaños, J.L., Jiménez-Islas, H. (2017). One-domain approach for studying multiphase transport phenomena in biofilm growing systems. Biofouling, 33(4), 336-351. http://dx.doi.org/10.1080/08927014.2017.1311326

Orgogozo, L., Golfier, F., Buès, M.A., Quintard, M., Koné, T. (2013). A dual-porosity theory for solute transport in biofilm-coated porous media. Advances in water resources. 62, 266-279. https://doi.org/10.1016/j.advwatres.2013.09.011

Ottengraf, S.P.P. (1977). Theoretical model for a submerged biological filter. Biotechnology and Bioengineering. 19(9), 1411-1416. DOI: 10.1002/bit.260190914

Ottengraf, S.P.P., Van Den Oever, A.H.C. (1983). Kinetics of organic compound removal from waste gases with a biological filter. Biotechnology and Bioengineering. 25(12), 3089-3102. DOI: 10.1002/bit.260251222

Ottengraf, S.P.P. (1986). Exhaust gas purification. In: Biotechnology, a Comprehensive Treatise in 8 Volumes, H.J. Rehm and G. Reed (Eds.), Weinheim: Verlag Chemie, Vol. 8, pp. 425 – 252.

Ozis, F., Bina, A., Devinny, J.S. (2007). Biofilm growth-percolation models and channeling in biofilter clogging. Journal of the Air & Waste Management Association. 57(8), 882-892. http://www.tandfonline.com/doi/abs/10.3155/1047-3289.57.8.882

Park, O.H., Jung, I.G. (2006). A model study based on experiments on toluene removal under high load condition in biofilters. Biochemical engineering journal. 28(3), 269-274. https://doi.org/10.1016/j.bej.2005.11.011

Piché, S., Grandjean, B.P., Larachi, F. (2002). Reconciliation procedure for gas − liquid interfacial area and mass-transfer coefficient in randomly packed towers. Industrial & engineering chemistry research. 41(19), 4911-4920. DOI: 10.1021/ie020094g

Pruess, K., Narasimhan, T.N. (1982). A practical method for modeling fluid and heat flow in fractured porous media. https://pubarchive.lbl.gov/islandora/object/ir%3A83149

Qasim, M., Shareefdeen, Z. (2013). Analysis of a recent biofilter model for toluene biodegradation. Advances in Chemical Engineering and Science. 3(01), 57. DOI:10.4236/aces.2013.31006

Roache, P.J. (1972). Computational Fluid Dynamics. Hermosa Publishers. Albuquerque, N. M., EUA.

Sahir, A.H., Kumar, S., Kumar, S. (2007). Modelling of a packed bed solid-state fermentation bioreactor using the N-tanks in series approach. Biochemical engineering journal. 35(1), 20-28. https://doi.org/10.1016/j.bej.2006.12.016

Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F. (2006). Sensitivity analysis practices: Strategies for model-based inference. Reliability Engineering & System Safety. 91(10), 1109-1125. https://doi.org/10.1016/j.ress.2005.11.014

Serial, G.A., Smith, F.L., Suidan, M.T., Biswas, P., Brenner, R.C. (1995). Evaluation of trickle bed biofilter media for toluene removal. Journal of the Air & Waste Management Association. 45(10), 801-810. http://dx.doi.org/10.1080/10473289.1995.10467410

Shareefdeen, Z., Baltzis, B.C. (1994a). Biofiltration of toluene vapor under steady-state and transient conditions: theory and experimental results. Chemical Engineering Science. 49(24), 4347-4360. https://doi.org/10.1016/S0009-2509(05)80026-0

Shareefdeen, Z., Baltzis, B.C. (1994b). Biological removal of hydrophobic solvent vapors from airstreams. In Advances in bioprocess engineering. 397-404. https://link.springer.com/chapter/10.1007/978-94-017-0641-4_53

Shareefdeen, Z., Baltzis, B.C., Oh, Y.S., Bartha, R. (1993). Biofiltration of methanol vapor. Biotechnology and Bioengineering. 41(5), 512-524. DOI: 10.1002/bit.260410503

Shareefdeen, Z., Shaikh, A.A., Ansar, Z. (1997). Development, experimental validation and dynamic analysis of a general transient biofilter model. Chemical Engineering Science, 52(5), 759-773. https://doi.org/10.1016/S0009-2509(96)00428-9

Silva, J., Morales, M., Cáceres, M., Morales, P., Aroca, G. (2012). Modelling of the biofiltration of reduced sulphur compounds through biotrickling filters connected in series: Effect of H2S. Electronic Journal of Biotechnology. 15(3), 7-7. DOI: 10.2225/vol15-issue3-fulltext-7

Spigno, G., Zilli, M., Nicolella, C. (2004). Mathematical modelling and simulation of phenol degradation in biofilters. Biochemical Engineering Journal. 19(3), 267-275. https://doi.org/10.1016/j.bej.2004.02.007

Van Bodegom, P. (2007). Microbial maintenance: a critical review on its quantification. Microbial ecology. 53(4), 513-523. https://link.springer.com/article/10.1007/s00248-006-9049-5

Van Lith, C., David, S.L., Marsh, R. (1990). Design criteria for biofilters. In Effluent Treatment and Waste Disposal. Institution of Chemical Engineers. ClairTech, Utrecht, Rugby, UK, 127-132.

Wani, A.H., Branion, R.M., Lau, A.K. (1997). Biofiltration: A promising and cost‐effective control technology for Odors, VOCs and air toxics. Journal of Environmental Science & Health Part A. 32(7), 2027-2055. http://dx.doi.org/10.1080/10934529709376664

Wongsuchoto, P., Charinpanitkul, T., Pavasant, P. (2003). Bubble size distribution and gas–liquid mass transfer in airlift contactors. Chemical Engineering Journal. 92(1), 81-90. https://doi.org/10.1016/S1385-8947(02)00122-5

Xi, J., Kang, I., Hu, H., Zhang, X. (2015). A biofilter model for simultaneous simulation of toluene removal and bed pressure drop under varied inlet loadings. Frontiers of Environmental Science & Engineering. 9(3), 554-562. https://link.springer.com/article/10.1007/s11783-014-0671-z

Yang, C.P., Chen, H., Zeng, G.M., Qu, W., Zhong, Y.Y., Zhu, X., Suidan, M.T. (2006). Modeling biodegradation of toluene in rotating drum biofilter. Water science and technology. 54(9). 137-144. DOI: 10.2166/wst.2006.860

Zamir, S.M., Halladj, R., Nasernejad, B. (2011). Removal of toluene vapors using a fungal biofilter under intermittent loading. Process safety and environmental protection. 89(1), 8-14. https://doi.org/10.1016/j.psep.2010.10.001

Published

2018-05-25

How to Cite

Calderón Alvarado, M. P., Oliveros Muñoz, J. M., González Brambila, M. M., Martinez González, G. M., & Jiménez Islas, H. (2018). Mass transfer analysis in dual continuum models for biofiltration of volatile organic compounds (VOC’s). Nova Scientia, 10(20), 133–169. https://doi.org/10.21640/ns.v10i20.1282

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.