Electronic Properties of III-V Semiconductors under [111] Uniaxial Strain; a Tight-Binding Approach: I. Arsenides and Gallium Phosphide

Authors

  • Miguel E. Mora-Ramos Facultad de Ciencias. Universidad Autónoma del Estado de Morelos
  • J. Juan Martín Mozo Centro de Investigación en Dispositivos Semiconductores-ICUAP. Benemérita Universidad Autónoma de Puebla

DOI:

https://doi.org/10.21640/ns.v2i3.222

Keywords:

tight-binding, III-V materials, electronic structure, uniaxial strain

Abstract

The sp3 s * d 5 empirical tight-binding approach is used to study some properties of the electronic structure in a group of III-V zincblende semiconductors which are of most intersest to electronics and optoelectronics. Particularly, it is investigated the influence of [111] uniaxial strain upon these properties. We make use of a formulation based on the elasticity theory to properly derive the relative positions of the nearest neighbors in the lattice and, consequently, write down the set of four basis vectors centered at the anion. Special attention is paid to the inclusion of the internal deformation effect. We present the variation of the Γ-, X- and L-related energy gaps and Mora-Ramos, M. y J. Martín Revista Electrónica Nova Scientia, Nº 3 Vol. 2 (1), 2009. ISSN 2007 - 0705. pp: 66 – 93 - 68 - conduction band effective masses as functions of the uniaxial strain in the case of AlAs, GaAs, InAs, GaP. Comparison with experimental reports on indirect interband transitions in bulk GaP under compressive strain gives very good agreement between these reports and the calculated variation of X-related energy gap as a function of the strain.

Downloads

Download data is not yet available.

References

Arriaga, J., G. Armelles, M. C. Muñoz, J. M. Rodríguez, P. Castrillo, M. Recio, V. R. Velasco, F. Briones, and F. García-Moliner. (1991). Phys. Rev. B 43, 2050.

Arriaga, J., M. C. Muñoz, V. R. Velasco, and F. García-Moliner. (1991). Phys. Rev. B 43, 9626.

Boykin, T. B., L. J. Gamble, G. Klimeck, and R. C. Bowen. (1999). Phys. Rev. B 59, 7301.

Boykin, T. B., G. Klimeck, R. C. Bowen, and F. Oyafuso. (2002). Phys. Rev. B 66, 125207.

Caha, O., P. Mikulík, J. Novák, V. Holý, S. C. Moss, A. Norman, A. Mascarenhas, J. L. Reno, and B. Krause. (2005). Phys. Rev. B 72, 035313.

Cardona, M. (1996) phys. stat. sol. (b) 198, 5.

Chang, Y. C. and D. E. Aspnes. (1990). Phys. Rev. B 41, 12002.

Christensen, N. E. (1984). Phys. Rev. B 30, 5753.

Dandrea, R. G. and A. Zunger. (1991). Phys. Rev. B 43, 8962.

García-Moliner, F. and V. R. Velasco. (1992). Theory of Single and Multiple Interfaces, Singapore. World Scientific.

Harrison W. A. (1980). Electronic Structure and the Properties of Solids. San Francisco. Freeman.

Heyd, J., G. E. Scuseria, and M. Ernzerhof. (2003). J. Chem. Phys. 118, 8207.

Heyd, J., G. E. Scuseria, and M. Ernzerhof. (2006). J. Chem. Phys. 124, 219906.

Ikonić, Z., G. P. Srivastava, and J. C. Inkson (1992). Phys. Rev. B 46, 15150.

Jancu, J.-M., R. Scholz, F. Beltram, and F. Bassani. (1998). Phys. Rev. B 57, 6493 (1998).

Jancu, J.-M., F. Bassani, F. Della Sala, and R. Scholz. (2002). Appl. Phys. Lett. 81 , 4838.

Jancu, J.-M., R. Scholz, G. C. La Rocca, E. A. de Andrada e Silva, and P. Voisin. (2004). Phys. Rev. B 70, 121306.

Jancu, J,-M., R. Scholz, E. A. de Andrada e Silva, and G. C. La Rocca, Phys. Rev. B 72, 193201.

Jancu, J.-M. and P. Voisin. (2007). Phys. Rev. B 76, 115202.

Jaskólski, W., M. Zieliński, G. W. Bryant, and J. Aizpurúa. (2006). Phys. Rev. B 74, 195339.

Kim, K., P. R. Kent, A. Zunger, and C. B. Geller. (2002). Phys. Rev. B 66, 045208.

Kleinman, L. (1962). Phys. Rev. 128 , 2614.

Magri, R. (1990). Phys. Rev. B 41, 6020.

Martin, R. M. (1970). Phys. Rev. B 1, 4005.

Mora-Ramos, M. E. and V. R. Velasco. (2006). Surf. Sci. 600, 2868.

Velasco, V. R. and M. E. Mora-Ramos. (2007). Surf. Sci. 601, 1079.

Muramatsu, S. and M. Kitamura. (1993). J. Appl. Phys. 73, 4270.

Niquet, Y. M., D. Rideau, C. Tavernier, H. Jaouen, and X. Blasé. (2009). Phys. Rev. B, 79, 245201.

Osbourn, G. S. (1986). IEEE J. Quantum Electronics QE-22, 1677.

Pearson, Ch., C. Dorin, J. Mirecki-Millunchick, B.G. Orr. (2004). Phys. Rev. Lett. 92, 056101.

Piquini, P. and A. Zunger. (2008). Phys. Rev. B 78, 161302.

Priester, C., G. Allan, and M. Lannoo. (1988). Phys. Rev. B 37, 8519.

Ren, S. Y., X. Chen, and J. D. Dow. (1997). J. Phys. Chem. Solids 59, 403.

Richardson, S. L., M. L. Cohen, S. G. Louie, and J. R. Chelikowsky. (1986). Phys. Rev. B 33, 1177.

Scholz, R., J.-M. Jancu, F. Beltram, and F. Bassani. (2000). phys. stat. sol. (b) 217, 449.

Smith, D. L., and C. Mailhiot. (1990). Rev. Mod. Phys. 62 , 173.

Vogl, P., H. P. Hjalmarson, and J. D. Dow. (1983). J. Phys. Chem. Solids 44, 365.

Xia, J.-B. and Y.-Ch. Chang. (1990). Phys. Rev. B 42, 1781.

Yan, Q., P. Rinke, M. Scheffler, and C. G. Van de Walle. (2009). Appl. Phys. Lett. 95, 121111.

Yan Voon, L. C. L. (1993). Electronic and Optical Properties of Semiconductors: A Study based on the Empirical Tight-Binding Model, Boca Raton. Dissertation.com.

Grivickas, P., M. D. McCluskey, and Y. M. Gupta, (2007), Phys. Rev. B 75, 235207.

Published

2014-11-04

How to Cite

Mora-Ramos, M. E., & Martín Mozo, J. J. (2014). Electronic Properties of III-V Semiconductors under [111] Uniaxial Strain; a Tight-Binding Approach: I. Arsenides and Gallium Phosphide. Nova Scientia, 2(3), 66–93. https://doi.org/10.21640/ns.v2i3.222

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.