Assessment of cast steel anchorage fracture toughness of a cable-stayed bridge by small punch test

Authors

  • Erik López-Vargas Instituto Tecnológico de Celaya, Depto. de Ingeniería Mecatrónica.
  • Luis Alejandro Alcaraz Caracheo Instituto Tecnológico de Celaya, Depto. de Ingeniería Mecatrónica http://orcid.org/0000-0003-1319-0299
  • José Alberto Álvarez Universidad de Cantabria
  • Roberto Lacalle Universidad de Cantabria
  • Ramón Rodríguez-Castro Instituto Tecnológico de Celaya, Depto. de Ingeniería Mecánica.
  • Miguel Martínez-Madrid Instituto Mexicano del Transporte
  • Álvaro Sánchez-Rodríguez Instituto Tecnológico de Celaya, Depto. de Ingeniería Mecánica.

DOI:

https://doi.org/10.21640/ns.v10i20.1316

Keywords:

small punch test, fracture toughness, low-alloy cast steel, cable-stayed bridge, anchorage

Abstract

The assessment of the residual lifetime of in-service structural components requires knowledge of fracture toughness values; however, conventional test methods for measuring fracture toughness demand the removal of large material samples from components, which generally is impractical. Recently, the Small Punch Test (SPT) (which utilizes nonstandard miniature specimens) has been used as a practical and convenient alternative for evaluating fracture toughness characteristics of the material of components in service. The purpose of this research was to find a correlation between the SPT equivalent fracture strain εqf and the fracture toughness JIC of low-alloy cast steels coming from anchorages of a cable-stayed bridge, which is located in the Gulf of México. Fracture toughness was calculated from KIC experimental data from previous work and equivalent fracture strain εqf was obtained by SPT using specimens 10×10 mm2 squares of 0.5 mm thickness. From εqf and JIC results and corresponding low-alloy steel experimental data from literature, a linear correlation was proposed to estimate fracture toughness from SPT equivalent fracture strain for cast steels belonging to this study case.

Downloads

Download data is not yet available.

Author Biography

Luis Alejandro Alcaraz Caracheo, Instituto Tecnológico de Celaya, Depto. de Ingeniería Mecatrónica

Profesor-Investigador del Departamento de Ing. Mecatrónica

References

Alcaraz-Caracheo L. A. (2012). Análisis probabilístico de integridad de un anclaje de acero estructural (Tesis Doctoral). Retrieve from: http://www.sepi.esimez.ipn.mx/posgradomecanica/tesis/2010/analisisprobabilistico.pdf. Escuela Superior de Ingeniería Mecánica y Eléctrica, Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, México.

Alcaraz-Caracheo, L.A., Terán-Guillén, J., Carrión-Viramontes, F.J. & Martínez-Madrid, M. (2012). Correlation between Specimen Size and Fracture Toughness of 1Cr-½Ni Cast Steel Used in the Anchorage of a Cable-Stayed Bridge. Científica. 16(3), 135-143. Retrieve from: http://www.redalyc.org/articulo.oa?id=61426384004.

ASTM E 1019-03 (2004). Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel and in Iron, Nickel, and Cobalt Alloys, ASTM International, PA, USA.

ASTM E 415-99A (2004) Test Method for Optical Emission Vacuum Spectrometric Analysis of Carbon and Low-Alloy Steel, ASTM International, PA, USA.

ASTM E 8. (2004). Standard Test Method for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, USA.

ASTM E399. (2004). Standard Test Method for Plain-Strain Fracture Toughness of Metallic Materials, ASTM International, West Conshohocken, PA, USA.

Cárdenas, E., Belzunce, F. J., Rodriguez, C., Penuelas, I. & Betegón, C. (2012). Application of the small punch test to determine the fracture toughness of metallic materials. Fatigue & Fracture of Engineering Materials & Structures, 35(5), 441-450. DOI: 10.1111/j.1460-2695.2011.01635.x

CWA 15627. (2008). Small Punch Test for Metallic Materials, CEN Workshop Agreement, European Committee for Standardization.

Dogan, B. & Hyde, T. (2012). Industrial application of Small Punch Testing for in-service component condition assessment: An overview. ASME 2012 Pressure Vessels and Piping Conference. (6): 1003-1010. Ontario, Canada

Delgado, H. & Hernández, H. (1998). Estudio metalúrgico de causas de falla del puente pescadero. Ingeniería e Investigación, 39, 12-28. Retrieve from: http://www.revistas.unal.edu.co/index.php/ingeinv/article/view/20973

Fleury, E. & Ha, J.S. (1998). Small punch tests to estimate the mechanical properties of steels for steam power plant: I. Mechanical strength. International Journal of Pressure Vessels and Piping, 75(9), 699-706. DOI: 10.1016/S0308-0161(98)00074-X.

García, T.E., Rodríguez, C., Belzunce, F.J. & Cuesta, I.I. (2015). Development of a new methodology for estimating the CTOD of structural steels using the small punch test. Engineering Failure Analysis, (50), 88-99. DOI: 10.1016/j.engfailanal.2015.01.011.

García, T.E., Rodríguez, C., Belzunce, F.J. & Suárez, C. (2014). Estimation of the mechanical properties of metallic materials by means of the small punch test. Journal of Alloys and Compounds, (582), 708-717. DOI: 10.1016/.jallcom.2013.08.009.

Guan, K., Hua, L., Wang, Q., Zou, X. & Song, M. (2011). Assessment of toughness in long term service CrMo low alloy steel by fracture toughness and small punch test. Nuclear Engineering and Design, 241(5), 1407-1413. DOI: http://dx.doi.org/10.1016/j.nucengdes.2011.01.031.

Lacalle, R. (2012). Determinación de las propiedades en tracción y fractura de materiales metálicos mediante ensayos Small Punch. (Tesis Doctoral). Universidad de Cantabria, España.

Lacalle, R., Álvarez, J. A., & Gutiérrez-Solana, F. (2008). Analysis of key factors for the interpretation of small punch test results. Fatigue & Fracture of Engineering Materials & Structures, 31(10), 841-849. DOI: 10.1111/j.1460-2695.2008.01262.x

López, J.A., Carrión, F.J., Quintana, J.A., Samayoa-Ochoa, D., Lomelí, M.G. & Orozco, P.R. (2009). Verification of the Ultrasonic Qualification for Structural Integrity of Partially Concrete Embedded Steel Elements. In Advanced Materials Research, (65), 69-78. DOI: 10.4028/www.scientific.net/AMR.65.69.

Madia, M., Foletti, S., Torsello, G. & Cammi, A. (2013). On the applicability of the small punch test to the characterization of the 1CrMoV aged steel: Mechanical testing and numerical anal-ysis. Engineering Failure Analysis, (34), 189-203. DOI: 10.1016/j.engfailanal.2013.07.028.

Manahan, M.P., Argon, A.S. & Harling, O.K. (1981). The development of a miniaturized disk bend test for the determination of post-irradiation mechanical properties. Journal of Nuclear Materials, (104), 1545-1550. DOI: 10.1016/0022-3115(82)90820-0.

Mao, X., Shoji, T. & Takahashi, H. (1987). Characterization of fracture behaviour in small punch test by combined recrystallization-etch method and rigid plastic analysis. Journal of Testing and Evaluation, 15(1), 30-37. DOI: 10.1520/JTE11549J.

Mao, X. & Takahashi, H. (1987). Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests. Journal of Nuclear Materials, 150(1), 42-52. DOI: 10.1016/0022-3115(87)90092-4.

Mao, X., Takahashi, H. & Kodaira, T. (1991). Estimation of mechanical properties of irradiated nuclear pressure vessel steel by use of sub-sized CT specimen and small punch specimen. Scripta metallurgica et materialia, 25(11), 2487-2490. DOI: 10.1016/0956-716X(91)90054-5.

Misawa, T., Nagata, S., Aoki, N., Ishizaka, J. & Hamaguchi, Y. (1989). Fracture toughness evaluation of fusion reactor structural steels at low temperatures by small punch tests. Journal of Nuclear Materials, (169), 225-232. DOI: 10.1016/0022-3115(89)90538-2.

Quintana, J., Carrión, F. & Crespo, S. (2014). Damage detection on a cable stayed bridge using wave propagation analysis. 7th European Workshop on Structural Health Monitoring, Nantes, France.

Rodríguez, C., Cabezas, J.G., Cárdenas, E., Belzunce, F. J. & Betegón, C. (2009). Mechanical properties characterization of heat-affected zone using the small punch test. Welding journal, 88(9), 188-192. Retrieved from: https://app.aws.org/wj/supplement/wj0909-188.pdf.

Ruan, Y., Spätig, P. & Victoria, M. (2002). Assessment of mechanical properties of the martensitic steel EUROFER97 by means of punch tests. Journal of nuclear materials, (307), 236-239. DOI: 10.1016/S0022-3115(02)01194-7.

Terán, J., Cicero, S., García, T., Alvarez, J.A., Martínez, M., Pérez, J.T. (2014). Structural integrity assessment of the cast Steel upper anchorage elements used in a cable stayed bridge. Engineering structures, (81), 309-317. DOI: 10.1016/j.engstruct.2014.10.018.

Urriolagoitia-Sosa, G., Urriolagoitia-Calderon, G., Romero-Ángeles, B., Torres-Franco, D., Hernández-Gómez, H., Molina-Ballinas, A., Torres-San Miguel, C.R., Campos-López, J.P. (2012). Using fracture mechanics for determining residual stres fields in diverse geometries. Ingeniería e Investigación, 32(3), 19-26. Retrieve from: www.revistas.unal.edu.co/index.php/ingeinv/article/view/35935.

Viswanathan, R. (1994). Small punch testing for determining the material toughness of low alloy steel components in service. Journal of Engineering Materials and Technology, (116), 457-464. DOI: 10.1115/1.2904313.

Wang, Z.X., Shi, H.J., Lu, J., Shi, P. & Ma, X.F. (2008). Small punch testing for assessing the fracture properties of the reactor vessel steel with different thicknesses. Nuclear engineering and design, 238 (12), 3186-3193. DOI: 10.1016/j.nucengdes.2008.07.013.

Webster, S. & Bannister, A. (2000). Structural integrity assessment procedure for Europe–of the SINTAP programme overview. Engineering Fracture Mechanics, 67(6), 481-514. DOI: 10.1016/S0013-7944(00)00070-9.

Published

2018-05-25

How to Cite

López-Vargas, E., Alcaraz Caracheo, L. A., Álvarez, J. A., Lacalle, R., Rodríguez-Castro, R., Martínez-Madrid, M., & Sánchez-Rodríguez, Álvaro. (2018). Assessment of cast steel anchorage fracture toughness of a cable-stayed bridge by small punch test. Nova Scientia, 10(20), 244–262. https://doi.org/10.21640/ns.v10i20.1316

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.