Environmental impact of non-hazardous waste in a petrochemical industry in Southern Tamaulipas, Mexico

Authors

DOI:

https://doi.org/10.21640/ns.v15i31.3203

Keywords:

emissions scenario, indicators, waste, industry, production, environmental impact, region, environment, sustainability

Abstract

The increase in waste generation and constant growth requires quantification of emissions in order to assess the problem and contribute to its mitigation. The study evaluated the impact of non-hazardous waste through organic and inorganic indicators, such as annual tons of paper and cardboard, plastics, ferrous metal, food waste, garden and wood, for three base scenarios (BS) for the period 2016-2018, a reference scenario (integration of the base scenarios) and a futuristic scenario determined by the increase in production. These scenarios were built based on the availability of information from the safety and environmental sector of the industry to calculate CO2-eq (Carbon Dioxide Equivalent) using the GHG-MRS tool, based on pre-defined parameters adapted to the availability of information and the conditions of the case study. The 2016 EB estimated 60 t/a/CO2-eq, the 2017 EB presented 46 t/a/CO2-eq, the 2018 EB generated 14 t/a/CO2-eq, while the reference scenario determined 60 t/a/CO2-eq. The data provide a prospective vision for decision-making in a petrochemical industry in southern Tamaulipas, contributing to the problem of increasing waste from a specific sector with regional implications.

Downloads

Download data is not yet available.

Author Biographies

Rocío Vargas Castilleja, Autonomous University of Tamaulipas

Faculty of Engineering Tampico, Division of Graduate Studies and Research, Tampico, Tamaulipas, Mexico

Julio César Rolón Aguilar, Autonomous University of Tamaulipas

Faculty of Engineering Tampico, Division of Graduate Studies and Research, Tampico, Tamaulipas, Mexico

Jamie Sahory Hernández Jasso, Autonomous University of Tamaulipas

Faculty of Engineering Tampico, Division of Graduate Studies and Research, Tampico, Tamaulipas, Mexico

References

Bugge, M., Fevolden, A., y Klitkou, A. (2019). Governance for system optimization and system change: The case of urban waste. Research Policy. 48(4), 1076–1090. https://doi.org/10.1016/j.respol.2018.10.013

Bustos-Gómez, L. M., & González-Clavijo, L. N. (2021). Formulación de una propuesta de gestión de residuos de polietileno de baja densidad. Caso de estudio: empresa dedicada a la importación de alimentos. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria

CEPAL (2010). Metodologías de cálculo de la huella de carbono y sus potenciales implicaciones para América Latina. Comisión Económica para América Latina y el Caribe. Documento de trabajo. Santiago de Chile, 51 pp.

DOF (2018). Ley general para la prevención y gestión integral de los residuos. Diario Oficial de la Federación, México. 19 de enero de 2018.

Habib, K., Schmidt, J., y Christensen, P. (2013). A historical perspective of Global Warming Potential from Municipal Solid Waste Management. Waste Management, 33(9), 1926–1933. https://doi.org/10.1016/j.wasman.2013.04.016

Hidayatno, A., Destyanto, A., y Noor, S. (2019). Conceptualizing Carbon Emissions from Energy Utilization in Indonesia’s Industrial Sector. Energy Procedia, 156, 139–143. https://doi.org/10.1016/j.egypro.2018.11.118

IFEU (2009). Calculadora MRS-GEI: herramienta de cálculo de Gases de Efecto Invernadero (GEI) en el Manejo de Residuos Sólidos (MRS). Instituto de Investigación de Energía y Medio Ambiente de Heidelberg GmbH. Manual. Frankfurt, Alemania, 66 pp.

INECC (2012). Diagnóstico básico para la gestión integral de los residuos. Instituto Nacional de Ecología y Cambio Climático/Centro Nacional de Investigación y Capacitación Ambiental. Reporte. México, 201 pp.

IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories–Vol. 5: Waste. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H., Buendia L., Miwa K., Ngara T. y Tanabe K. (eds). Published: IGES, Japón.

Li, B., & Haneklaus, N. (2022). Reducing CO2 emissions in G7 countries: The role of clean energy consumption, trade openness and urbanization. Energy Reports, 8, 704–713. https://doi.org/10.1016/j.egyr.2022.01.238

Loureiro, S., Rovere, E., y Mahler, C. (2013). Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro. Waste Management, 33(5), 1302–1312. https://doi.org/10.1016/j.wasman.2013.01.024

Muisa-Zikali, N., Chingoto, R. M., Utete, B., & Kunedzimwe, F. (2022). Household solid waste handling practices and recycling value for integrated solid waste management in a developing city in Zimbabwe. Scientific African, 16, e01150. https://doi.org/10.1016/j.sciaf.2022.e01150

Nyashina, G., Vershinina, K., Shlegel, N., y Strizhak, P. (2019). Effective incineration of fuel-waste slurries from several related industries. Environmental Research, 176, 108559. https://doi.org/10.1016/j.envres.2019.108559

ONU (2018). Perspectiva de la gestión de residuos en América Latina y el Caribe. Programa de las Naciones Unidas para el Medio Ambiente, Oficina para América Latina y el Caribe. Reporte. Ciudad de Panamá, Panamá. 133 pp.

PINCC (2015). Reporte mexicano de cambio climático; emisiones y mitigación de gases efecto invernadero Grupo III. Programa de Investigación en Cambio Climático/Universidad Nacional Autónoma de México. Reporte. México. 336 pp.

Rodríguez, R. A., Belfort-Martínez, A., & Maris-Udaquiola, S. (2014). Gestión ambiental empresarial: cálculo de la huella de carbono en la industria vitivinícola. Gestión y Ambiente, 17(1), 14. https://core.ac.uk/download/pdf/77275173.pdf

Saidan, M. (2019). Cross-sectional survey of non-hazardous waste composition and quantities in industrial sector and potential recycling in Jordan. Environmental Nanotechnology, Monitoring & Management, 100227. https://doi.org/10.1016/j.enmm.2019.100227

Wu, R., Geng, Y., Cui, X., Gao, Z., y Liu, Z. (2019). Reasons for recent stagnancy of carbon emissions in China’s industrial sectors. Energy, 172, 457–466. https://doi.org/10.1016/j.energy.2019.01.156

Zhang, L., Shen, Q., Wang, M., Sun, N., Wei, W., Lei, Y., y Wang, Y. (2019). Driving factors and predictions of CO2 emission in China’s coal chemical industry. Journal of Cleaner Production, 210, 1131–1140. https://doi.org/10.1016/j.jclepro.2018.10.352

Downloads

Published

2023-11-24

How to Cite

Vargas Castilleja, R., Rolón Aguilar, J. C., & Hernández Jasso, J. S. (2023). Environmental impact of non-hazardous waste in a petrochemical industry in Southern Tamaulipas, Mexico . Nova Scientia, 15(31), 1–10. https://doi.org/10.21640/ns.v15i31.3203

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.