Biodegradation of Direct Blue 71 triazo dye by bacteria from sediments of the genus Bacillus

Authors

DOI:

https://doi.org/10.21640/ns.v15i30.3036

Keywords:

Bacillus anthracis, Bacillus thuringensis, azo dye, bioremediation, phylogeny, environmental microorganisms, contaminants, Gram, strains, kinetics, decomposition, azo groups

Abstract

Bioremediation processes for the degradation of dyes from the textile industry have been of great interest, due to their capacity to decompose these contaminants without generating toxic products. Direct blue 71 contains three N=N azo groups and has an aromatic structure, making it a compound that is difficult to degrade. We evaluated the degradation potential of direct blue dye 71 by bacteria of the genus Bacillus. Bacteria isolated from sediments of hydrological basins were used, Gram staining and observation by scanning electron microscopy were performed. The kinetics of growth and biodegradation were performed in nutrient broth added with 100 mgL-1 of direct blue 71 incubating at 37°C and 200 rpm for 5 days, growth was determined by spectrophotometry at 600 nm and biodegradation at 575 nm. Phylogenetic analysis of the bacterial strains was carried out by amplifying the 16S rRNA gene. Two bacillary bacteria Gram positive were identified. Phylogenetic analysis identified strain ANCd110506 as Bacillus anthracis and strain ANHg310511 as Bacillus thuringensis, with a similarity index of 97.6 % and 100 %, respectively. Bacillus anthracis presented a biodegradation of 75.5 %, while the Bacillus thuringensis strain obtained a biodegradation of 67.9 % in 120 hours.

Downloads

Download data is not yet available.

Author Biographies

Alejandro Sergio Cruz Soto, Autonomous University of Ciudad Juárez

Institute of Engineering and Technology. Ciudad Juarez, Chihuahua, Mexico

Claudia Carolina Hernández Peña, Autonomous University of Ciudad Juárez

Institute of Biomedical Sciences. Ciudad Juarez, Chihuahua, Mexico

Edith Flores Tavizón, Autonomous University of Ciudad Juárez

Institute of Engineering and Technology. Ciudad Juarez, Chihuahua, Mexico

Luis Gerardo Bernadac Villegas, Autonomous University of Ciudad Juárez

Institute of Engineering and Technology. Ciudad Juarez, Chihuahua, Mexico

Marisela Yadira Soto Padilla, Autonomous University of Ciudad Juárez

Institute of Engineering and Technology. Ciudad Juarez, Chihuahua, Mexico

References

Ali, J., Ali, F., Ahmad, I., Rafique, M., Munis, M. F. H., Hassan, S. W., ... y Chaudhary, H. J. (2021). Mechanistic elucidation of germination potential and growth of Sesbania sesban seedlings with Bacillus anthracis PM21 under heavy metals stress: An in vitro study. Ecotoxicology and Environmental Safety, 208, 111769. https://doi.org/10.1016/j.ecoenv.2020.111769

Artega, M. C. L. (2017). Caracterización filogenética de bacterias metalófilas y metal resistentes, presentes en sedimentos de la presa Las Vírgenes y el río Conchos, Chihuahua, México. [Tesis para obtener el grado de Maestra en Ingeniería Ambiental, Instituto de Ingeniería y Tecnología]. Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México.

Bankole, P. O., Adekunle, A. A., Obidi, O. F., Olukanni, O. D., y Govindwar, S. P. (2017). Degradation of indigo dye by a newly isolated yeast, Diutina rugosa from dye waste-water polluted soil. Journal of environmental chemical engineering, 5(5), 4639-4648. https://doi.org/10.1016/j.jece.2017.08.050

Bodo, T., y Gimah, B. G. (2019). Isolation and Identification of Microorganisms Associated with Bioremediation of Oil Spilled Site in Bodo West, Rivers State, Nigeria. Journal of Geography, Environment and Earth Science International, 21(3), 1-8. https://doi.org/10.9734/jgeesi/2019/v21i330129

Chen, Z., Chen, H., Pan, X., Lin, Z., y Guan, X. (2015). Investigation of methylene blue biosorption and biodegradation by Bacillus thuringiensis 016. Water, Air, & Soil Pollution, 226(5), 1-8. https://doi.org/10.1007/s11270-015-2417-3

Cortázar-Martínez, A., González-Ramírez, C. A., Coronel-Olivares, C., Escalante-Lozada, J. A., Castro-Rosas, J., y Villagómez-Ibarra, J. R. (2012). Biotecnología aplicada a la de-gradación de colorantes de la industria textil. Universidad y ciencia, 28(2), 187-199. http://www.scielo.org.mx/scielo.php?pid=S0186-29792012000200009&script=sci_arttext

Dave, S. R., y Dave, R. H. (2009). Isolation and characterization of Bacillus thuringiensis for Acid red 119 dye decolourisation. Bioresource technology, 100(1), 249-253. https://doi.org/10.1016/j.biortech.2008.05.019

Deepti, G., y Monika, G. (2021). Decolorization of dyes direct red 31 (dr 31); direct blue 71 (db 71) and direct. Journal of Bio Innovation, 10(3), 728-740. https://doi.org/10.46344/JBINO.2021.v10i03.02

Elsilk, S. E., El-Shanshoury, A. E. R. R., y Ateya, P. S. (2014). Accumulation of some heavy metals by metal resistant avirulent Bacillus anthracis PS2010 isolated from Egypt. African Journal of Microbiology Research, 8(12), 1266-1276. https://doi.org/10.5897/AJMR2013.6551

Hafshejani, M. K., Ogugbue, C. J., y Morad, N. (2014). Application of response surface methodology for optimization of decolorization and mineralization of triazo dye Direct Blue 71 by Pseudomonas aeruginosa. 3 Biotechnología, 4(6), 605-619. https://doi.org/10.1007/s13205013-0192-7

Hefnawy, M. A., Gharieb, M. M., Shaaban, M. T., y Soliman, A. M. (2017). Optimization of culture condition for enhanced decolorization of direct blue dye by Aspergillus flavus and Penicillium canescens. Journal of Applied Pharmaceutical Science, 7(02), 083-092. https://doi.org/10.7324/JAPS.2017.70210

Hernández, C. C. P. (2017). Identificación filogenética de bacterias metalófilas aisladas en sedimentos del Lago de Chapala y su aplicación en biorremediación. [Tesis para obtener el grado de Doctor en Ciencias Especialidad en Biotecnología]. Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, México.

Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., y Pandit, A. B. (2016). A critical review on textile wastewater treatments: possible approaches. Journal of environmental management, 182, 351-366. https://doi.org/10.1016/j.jenvman.2016.07.090

Jobby, R., Jha, P., Kudale, S., Kale, A., y Desai, N. (2019). Biodegradation of textile dye Direct Blue 71 using root nodulating Rhizobium sp. Indian Journal of Experimental Biology, 57, 532-539.

Joshi, A. Y., Kothari, V. V., Kothari, C. R., Bhimani, H. D., y Kothari, R. K. (2014). Optimization of parameters for decolorization of a textile azo dye, Remazol Black B (RBB) by a newly isolated bacterium, Bacillus thuringiensis BYJ1. African Journal of Microbiology Research, 8(47), 3837-3849. https://doi.org/10.5897/AJMR2014.7090

Kosowski, K., Schmidt, M., Pukall, R., Hause, G., Kämpfer, P., y Lechner, U. (2014). Bacillus pervagus sp. nov. and Bacillus andreesenii sp. nov., isolated from a composting reactor. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_1), 88-94. https://doi.org/10.1099/ijs.0.054833-0

Kumar, S., Chaurasia, P., y Kumar, A. (2016). Isolation and characterization of microbial strains from textile industry effluents of Bhilwara, India: analysis with bioremediation. J Chem Pharm Res, 8(4), 143-150.

Lalnunhlimi, S., y Krishnaswamy, V. (2016). Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Brazilian journal of microbiology, 47, 39-46. https://doi.org/10.1016/j.bjm.2015.11.013

Logan, N. A., Lebbe, L., Verhelst, A., Goris, J., Forsyth, G., Rodríguez-Díaz, M., Heyndrickx, M., y De Vos, P. (2004). Bacillus shackletonii sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. International Journal of Systematic and Evolutionary Microbiology, 54(2), 373-376. https://doi.org/10.1099/ijs.0.02661-0

Manai, I., Miladi, B., El Mselmi, A., Smaali, I., Hassen, A. B., Hamdi, M., y Bouallagui, H. (2016). Industrial textile effluent decolourization in stirred and static batch cultures of a new fungal strain Chaetomium globosum IMA1 KJ472923. Journal of Environmental Management, 170, 8-14. https://doi.org/10.1016/j.jenvman.2015.12.038

Mirzaei, N., Mahvi, A. H., y Hossini, H. (2018). Equilibrium and kinetics studies of Direct blue 71 adsorption from aqueous solutions using modified zeolite. Adsorption Science & Technology, 36(1-2), 80-94. https://doi.org/10.1177/0263617416684836

Morales-Guzmán, F., y Melgoza-Alemán, R. M. (2009). Tratamiento del colorante azo Rojo Directo 23 mediante reactores discontinuos secuenciados anaerobios/aerobios. Información Tecnológica, 20(1), 73-82. https://doi.org/10.1612/inf.tecnol.4005it.08

Mukherjee, A. K., y Rai, S. K. (2011). A statistical approach for the enhanced production of alkaline protease showing fibrinolytic activity from a newly isolated Gram-negative Bacillus sp. strain AS-S20-I. New Biotechnology, 28(2), 182-189. https://doi.org/10.1016/j.nbt.2010.11.003

Nedashkovskaya, O. I., Van Trappen, S., Frolova, G. M., y De Vos, P. (2012). Bacillus berkeleyi sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Archives of Microbiology, 194(3), 215-221. https://doi.org/10.1007/s00203-011-0771-0

Neetha, J. N., Ujwal, P., Sandesh, K., Santhosh, H., y Girish, K. (2018). Aerobic biodegradation of acid blue-9 dye by Bacillus fermus isolated from Annona reticulata. Environmental Technology & Innovation, 11, 253-261. https://doi.org/10.1016/j.eti.2018.06.007

Olukanni, O. D., Osuntoki, A. A., Awotula, A. O., Kalyani, D. C., Gbenle, G. O., y Govindwar, S. P. (2013). Decolorization of dyehouse effluent and biodegradation of Congo red by Bacillus thuringiensis RUN1. Journal of Microbiology and Biotechnology, 23(6), 843-849. https://doi.org/10.4014/jmb.1211.11077

Oturkar, C. C., Nemade, H. N., Mulik, P. M., Patole, M. S., Hawaldar, R. R., y Gawai, K. R. (2011). Mechanistic investigation of decolorization and degradation of Reactive Red 120 by Bacillus lentus BI377. Bioresource Technology, 102(2), 758-764. https://doi.org/10.1016/j.biortech.2010.08.094

Padmanaban, V. C., Geed, S. R., Achary, A., y Singh, R. S. (2016). Kinetic studies on degradation of Reactive Red 120 dye in immobilized packed bed reactor by Bacillus cohnii RAPT1. Bioresource Technology, 213, 39-43. https://doi.org/10.1016/j.biortech.2016.02.126

Panigatti, M. C., Griffa, C., Boglione, R., Gentinetta, F., y Cassina, D. (2012). Uso de Escherichia coli para biorremediación de efluentes contaminados por cromo (VI). Avances en Ciencias e Ingeniería, 3(2), 11-24. http://sgpwe.izt.uam.mx/files/users/uami/tvolke/12_E.coli-Biorremediacion.pdf

Parshetti, G., Kalme, S., Saratale, G., y Govindwar, S. (2006). Biodegradation of Malachite Green by Kocuria rosea MTCC 1532. Acta Chimica Slovenica, 53(4), 492-498. http://acta-arhiv.chem-soc.si/53/53-4-492.pdf

Paz, A., Carballo, J., Pérez, M. J., y Domínguez, J. M. (2017). Biological treatment of model dyes and textile wastewaters. Chemosphere, 181, 168-177. https://doi.org/10.1016/j.chemosphere.2017.04.046

Rawat, D., Mishra, V., y Sharma, R. S. (2016). Detoxification of azo dyes in the context of environmental processes. Chemosphere, 155, 591-605. https://doi.org/10.1016/j.chemosphere.2016.04.068

Sandesh, K., Kumar, G., Chidananda, B., y Ujwal, P. (2019). Optimization of direct blue-14 dye degradation by Bacillus fermus (KX898362) an alkaliphilic plant endophyte and assessment of degraded metabolite toxicity. Journal of Hazardous Materials, 364, 742-751. https://doi.org/10.1016/j.jhazmat.2018.10.074

Shakoori, F. R., Aziz, I., Rehman, A., y Shakoori, A. R. (2010). Isolation and characterization of arsenic reducing bacteria from industrial effluents and their potential use in bioremediation of wastewater. Pakistan Journal of zoology, 42(3), 331-338.

Soto-Padilla, M. Y., Gortares-Moroyoqui, P., Cira-Chavez, L. A., y Estrada-Alvarado, M. I. (2018). Biochemical and molecular characterization of a native haloalkalophilic tolerant strain from the Texcoco Lake. Polish Journal of Microbiology, 67(3), 377. https://doi.org/10.21307/pjm-2018-047

Soto-Padilla, M. Y., Valenzuela-Encinas, C., Dendooven, L., Marsch, R., Gortáres-Moroyoqui, P., y Estrada-Alvarado, M. I. (2014). Isolation and phylogenic identification of soil haloalkaliphilic strains in the former Texcoco Lake. International Journal of Environmental Health Research, 24(1), 82-90. https://doi.org/10.1080/09603123.2013.800957

Srinivasan, S., y Sadasivam, S. K. (2018). Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. Journal of Water Process Engineering, 22, 180-191. https://doi.org/10.1016/j.jwpe.2018.02.004

Yoon, J. H., Kim, I. G., Kang, K. H., Oh, T. K., y Park, Y. H. (2004). Bacillus hwajinpoensis sp. nov. and an unnamed Bacillus genomospecies, novel members of Bacillus rRNA group 6 isolated from sea water of the East Sea and the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 54(3), 803-808. https://doi.org/10.1099/ijs.0.02678-0

Zin, K. M., Effendi Halmi, M. I., Abd Gani, S. S., Zaidan, U. H., Samsuri, A. W., y Abd Shukor, M. Y. (2020). Microbial Decolorization of Triazo Dye, Direct Blue 71: An Optimization Approach Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). BioMed Research International, 2020, 1-16. https://doi.org/10.1155/2020/2734135

Published

2022-12-14

How to Cite

Cruz Soto, A. S., Hernández Peña, C. C., Flores Tavizón, E., Bernadac Villegas, L. G., & Soto Padilla, M. Y. (2022). Biodegradation of Direct Blue 71 triazo dye by bacteria from sediments of the genus Bacillus. Nova Scientia, 15(30), 1–11. https://doi.org/10.21640/ns.v15i30.3036

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.