Degradation of Phenatrene by bacteria of the genus Burkholderia and Rhizobium isolated from nodules of mimosas

Authors

  • Arnoldo Wong-Villarreal Universidad Tecnológica de la Selva
  • Erick Santiago Mendez Universidad Tecnológica de la Selva
  • Emanuel Hernández Núñez Centro de Investigaciones y Estudios Avanzados, Unidad Mérida, Yucatán, México
  • Gustavo Yáñez Ocampo Laboratorio de Edafología y Ambiente, Universidad Autónoma del Estado de México,
  • Germán Giácoman Vallejos Facultad de Ingeniería, Universidad Autónoma de Yucatán, México.
  • Avel González Sánchez Facultad de Ingeniería, Universidad Autónoma de Yucatán, México.
  • Sandra Ramírez González Universidad Autónoma de Chiapas-Laboratorio de Agrotecnologías, Centro Universidad Empresa
  • Saúl Espinosa-Zaragoza Facultad de Ciencias Agrícolas, Universidad Autónoma de Chiapas
  • Orlando López- Báez Universidad Autónoma de Chiapas-Laboratorio de Agrotecnologías, Centro Universidad Empresa

DOI:

https://doi.org/10.21640/ns.v9i19.995

Keywords:

Burkholderia, Rhizobium, mimosas, phenanthrene

Abstract

The present work aimed to identify and evaluate degradation capacity of microorganisms isolated from mimosa nodules, which can be used in bioremediation processes of soils contaminated with phenanthrene.

Method. Isolation of 122 bacterial strains of mimosa nodules was grown in the Maconkey culture medium to discard enterobacteria; the bacterial strains that resulted negative to this test, were inoculated in the culture medium containing only phenanthrene source carbon. Three isolates had the capacity to grow in this medium. The three strains were identified by sequence of the 16s ribosomal gene, their capacity to grow in the presence of phenanthrene was assessed by microbial growth curves; the ability to degrade phenanthrene of the three strains was quantified by mass-coupled gas chromatography.

Results. The sequences obtained from the 16s ribosomal gene are genetically related to the strains of Burkholderia phenoliruptrix, Burkholderia phymatum and Rhizobium paknamense. The microbial growth of the three strains, supplied with phenanthrene, had a similar behavior to the control, which contained succinate as a carbon source. The strain of Burkholderia sp. BB26 degraded 78.5%, Burkholderia sp. BB24 68.5% and Rhizobium sp. BY8 99%.

Discussion. The results of phenanthrene degradation by Burkholderia sp. BB26, Burkholderia sp. BB24 and Rhizobium sp. BY8 strains suggest that the three strains have potential to be used in bioremediation processes of soils contaminated with phenanthrene. 

Downloads

Download data is not yet available.

Author Biography

Arnoldo Wong-Villarreal, Universidad Tecnológica de la Selva

División Agroalimentaria

Profesor de Tiempo Completo

References

Caballero, M.J., Onofre, L.J., Estrada, S.P., Martínez, A.L.( 2007). The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest in agriculture and bioremediation. Applied Environmental Microbiology. 73, 5308-19.

Coenye, T., Henry, D., Speert, D. P., Vandamme, P. (2004). Burkholderia phenoliruptrix sp. nov., to accommodate the 2, 4, 5-trichlorophenoxyacetic acid and halophenol-degrading strain AC1100. Systematic and Applied Microbiology. 27(6), 623-627.

Dutta, S.K., Hollowell, G.P., Hashem, F.M., Kuykendall, L.D. (2003). Enhanced biore-mediation of soil containing 2,4-dinitrotoluene by a genetically modified Sinorhizobium meli-loti. Soil Biology Biochemistry. 35, 667-675.

Eom, I.C., Rast, C., Veber, A.M., Vasseur, P. ( 2007). Ecotoxicity of a polycyclic aromatic hydrocarbons (PAH)-contaminated soil. Ecotoxicology and Environmental Safety. 67, 190-205.

GAŁAZKA, A., GAŁAZKA, R. (2015). Phytoremediation of polycyclic aromatic hydrocar-bons in soils artificially polluted using plant-associated-endophytic bacteria and dactylis glomerata as the bioremediation plant. Polish Journal Microbiology. 64(3), 239-250.

Harvey, C., Castro, P., Harmas, H., Lichtfouse, E., Schäffner, A., Smrcek, S., Werck, D. (2002). Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environmental Science and Pollution Research. 9, 29-47.

Jiang, J., Liu, H., Li, Q., Gao, N., Yao, Y., Xu, H. (2015). Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thurigiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae. Ecotoxicology and Environmental Safety. 120, 386-393.

Jukes TH, Cantor CR. Evolution of Protein Molecules. In: Munro, HN, editors Mammalian Protein Metabolism. New York: Academic Press; 1969. p.21-132 5.

Kim, S., Hwang, J., Chung, J., Bae, W. (2014). Enhancing trichloroethylene degradation us-ing non-aromatic compounds as growth substrates. Journal of hazardous materials, 275, 99-106.

López-Martínez, S., Gallegos-Martínez, M., Pérez, F., Gutiérrez, M. (2005). Phytoreme-diaton mechanisms of contaminated soils with xenobiotic organic molecules. Revista Interna-cional de Contaminación Ambiental. 21, 91-100 (In Spanish).

Martínez-Romero, E., Segovia, L., Martins, M.F., Franco, A.A., Graham, P., Pardo, M. (1991). Rhizobium tropici a novel species nodulating Phaseolus vulgaris L. beans and leucae-na sp. trees. International Journal Systematic Bacteriology. 41, 417-426.

Oldroyd, G.E.D., Downie, J.A. (2008). Coordinating nodule morphogenesis with rhizo-bial infection in legumes. Annual Review of Plant Biology. 59, 519-546.

Peixoto, R.S., Vermelho, A.B., Rosado, A.S. (2011). Petroleum-degrading enzymes: biore-mediation and new prospects. Enzyme Research. 1-7.

Poonthrigpun, S., Pattaragulwanit, K., Paengthai, S., Kriangkripipat, T., Juntongjin, K., Thaniyavarn, S., Petsom, A., Pinphanichakarn, P. ( 2006). Novel intermedi-ates of acenaph-thylene degradation by Rhizobium sp. strain CU-A1: evidence for naphthalene-1,8-dicarboxylic acid metabolism. Applied Environmental Microbiology. 72, 6034-6039.

Radwan, S.S., Dashti, N., El-Nemr, I.M., Khanafer, M.(2007). Hydrocarbon utilization by nodule bacteria and plant grow promoting rhizobacteria. International Journal Phytoremedia-tion. 9, 1-11.

Saitou, N., Nei M. (1987). The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution. 4(4), 406-25.

Si-Zhong, Y., Hui-Jun, J., Zhi, W., Rui-Xia, H., Yan-Jun, J.I., Xiu-Mei, L.I., Shao-Peng, Y.U. (2009). Bioremediation of oil spills in cold environments: a review. Pedosphere. 19, 371-381.

Weisburg, G.W., Barns, M.S., Pelletier, A.D., Lane J.D. (1991). 16S Ribosomal DNA Ampli-fication for Phylogenetic Study. Journal Bacteriology. 173, 697-03.

Wong, V.A., Caballero, M.J. (2010). Rapid identification of nitrogen-fixing and legume-nodulating Burkholderia species based on PCR 16S rRNA species-specific oligonucleotides. Systematic and Applied Microbiology. 33, 35-43.

Xiao, J., Guo, L., Wang, S., Lu, Y. (2010). Comparative impact of cadmium on two phenan-threne-degrading bacteria isolated from cadmium and phenanthrene co-contaminated soil in China. Journal of Hazardous Materials. 174, 818-823.

Yessica, G. P., Alejandro, A., Ronald, F. C., José, A. J., Esperanza, M. R., Samuel, C. S. J., Ormeño-Orrillo, E. (2013). Tolerance, growth and degradation of phenanthrene and benzo [a] pyrene by Rhizobium tropici CIAT 899 in liquid culture medium. Applied Soil Ecology. 63, 105-111.

Published

2017-08-22

How to Cite

Wong-Villarreal, A., Santiago Mendez, E., Hernández Núñez, E., Yáñez Ocampo, G., Giácoman Vallejos, G., González Sánchez, A., … López- Báez, O. (2017). Degradation of Phenatrene by bacteria of the genus Burkholderia and Rhizobium isolated from nodules of mimosas. Nova Scientia, 9(19), 291–305. https://doi.org/10.21640/ns.v9i19.995

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

You may also start an advanced similarity search for this article.