Simulation and comparison of electrical response of some piezoelectric materials used in the medical echography

Authors

  • R. A. Reyes-Villagrana Unidad Académica de Física Universidad Autónoma de Zacatecas
  • D. A. Contreras-Solorio Unidad Académica de Física Universidad Autónoma de Zacatecas

DOI:

https://doi.org/10.21640/ns.v6i11.77

Keywords:

Acoustic detector, Modelling, OrCAD-PSpice, Piezoelectric, Simulation

Abstract

The acoustics is interpreted as the science that studies sound waves, vibrations and their interactions with the environment, in both macroscopic and microscopic systems. This paper presents the model of piezoelectric acoustic detector developed with the OrCAD-PSpice program, to determine the maximum voltage amplitude using piezoelectric materials such as Quartz, PZT-5H, PVDF and PSMNZT. Our objective is to determine which of these piezoelectric materials: natural, ceramics, polymers and composites ceramics generates the maximum voltage without adding a stage of signal conditioning. Thus we have a computational tool to predict the voltages applied that yield piezoelectric materials using the technique of transmission, in the absence of the equipment to perform these comparisons. The water is used as a propagation medium and we proposes different thicknesses for simulations. We show the simulation graphs, where the PSMNZT provided a maximum voltage 21.272V with a thickness of 10µm.

Downloads

Download data is not yet available.

References

Auld, B. A., (1973), Acoustic Wave and Fields in Solids, Vol. 1, USA: Wiley & Sons.

Ballas, R. G., (2007), Piezoelectric multilayer beam bending actuators, static and dynamic behavior and aspects of sensor integration, Germany: Springer-Verlag.

Cho, Z. H., Jones, J. P., Singh, M., (1993), Foundations of medical imaging, USA: Wiley & Sons.

Cleveland, R. O., Chitnis, P. V., McClure, S. R., (2007), Acoustic field of a ballistic shock wave therapy device, Ultrasound in Med. & Biol., (33): 1327-1335.

Dahiya, R. S., Valle, M., Lorenzelli, L., (2009), SPICE model for lossy piezoelectric polymers, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., (56): 387 – 395.

Deventer, J. V., Löfqvist, T., Delsing, J., (2000), Pspice simulation of ultrasonic system, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., (47): 1014 – 1024.

Ensminger D., Bond L. J., (2011), Ultrasonics: Fundamentals, Technologies, and Applications, USA: CRC Press.

Hosono, Y., Yamashita, Y. Y. (2005), Piezoelectric ceramics with high dielectric constants for ultrasonic medical transducers, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., (52): 1823-1828.

Johansson, J., Martinsson, P. E., Delsing, J., (2007), Simulation of absolute amplitudes of ultrasound signals using equivalent circuits, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., (54): 1977 – 1983.

Kino G.S., (1988), Acoustic waves: devices, imaging, and analog signal processing, USA: Prentice Hall.

Krimholtz, R., Leedmon, D. A, Mattei, G. L., (1970), New equivalent circuits for elementary piezoelectric transducers, Electron, Lett., (6): 398 – 399.

Leach Jr., W. M., (1994), Controlled-source analogous circuits and SPICE models for piezoelectric transducer”, IEEE Trans. Ultrason. Ferroelect. Freq. Contr., (41): 60-66.

Leija, L. Editor, (2009), Método de procesamiento avanzado e inteligencia artificial en sistemas sensores y biosensors, México: Reverté.

Maione, E., Tortoli, P., Lypacewicz, G., Nowicki, A., Reid, J. M., (1999), Pspice modeling of ultrasound transducers: comparison of software models to experiment, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., (46): 399 – 406.

Mason, P. W., (1942), Electromechanical transducers and wave filters, USA: Van Nostrand.

Morris, S. A., Hutchens, C. G., (1986), Implementation of Mason’s model on circuit analysis programs, IEEE Trans. Ultrason. Ferroelect. Freq. Contr., (33): 295 – 298.

Nakamura, K. (2012), Ultrasonic transducers: Materials and design for sensors, actuators and medical applications, USA: Woodhead Publishing.

Nield-Gehrig, J. S., (2004), Fundamental of periodontal instrumentation & advanced root instrumentation, USA: Lippinott Williams & Wilkins.

Panametrics, (2010), Ultrsonics Transducers Catalog, USA: Olympus Corp.

Püttmer, A., Hauptmann, P., Lucklum, R., Krause, O., Henning, B., (1997), SPICE model for lossy piezoceramic transducers, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., (44): 60 – 66.

Redwood, M., (1961), Transient performance of a piezoelectric transducer, J. Acoust. Soc. Amer., (33): 527 – 536.

Reyes-Villagrana, R. A., Gutiérrez-Juárez, G., Ivanov-Tzontchev, R., (2011), Characterization of simulated mechanical-electrical properties of PVDF and PZT piezoelectric material for use in the pulsed optoacoustic spectroscopy, IJPAST, (2): 26-45.

Rossing, T. D. Ed., (2007), Handbook of Acoustic, Germany: Springer.

Sackmann, M., Deilus, M., Sauerbruch, T., et al., Shock-wave lithotripsy of gallbladder stones, N. Engl. J. Med., (318): 393-397.

Sinha, U. K., Gallagher, L. A., (2003) Effects of steel scalpel, ultrasonic scalpel, CO2 laser, and monopolar and bipolar electrosurgery on wound healing in guinea pig oral mucosa, Laryngoscope, (113): 228-36.

Shung, K. K., Smith, M. B., Tsui, B. M. W., (1992) Principles of medical imaging, USA: Academic Press.

Szabo, T.L., Lewin, P.A., (2007), Piezoelectric Materials for Imaging, J. Ultrasound Med, (26): 283-288.

Yiquan, Y., Binwen, S., Zongjie, L., (1995), A new planar PVDF standard hydrophone and its applications, IEEE Trans. Ultrason. Ferroelect. Freq. Contr., (42): 958 – 964.

Zagzebski, J. A., (1996), Essentials of Ultrasound Physics, USA: Mosby.

Zhang, Q., Lewin, P. A., Bloomfield, P. E., (1995), PVDF transducer – A performance comparasion of single layer and multilayer structures, IEEE Ultrason. Symp., 1341 - 1344.

Published

2014-10-08

How to Cite

Reyes-Villagrana, R. A., & Contreras-Solorio, D. A. (2014). Simulation and comparison of electrical response of some piezoelectric materials used in the medical echography. Nova Scientia, 6(11), 135–157. https://doi.org/10.21640/ns.v6i11.77

Issue

Section

Natural Sciences and Engineering

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.