Laboratory scale study of uncommon degradation SiO2 refractories used on induction furnaces

Authors

  • J. Zuno-Silva Ingeniería Mecánica Universidad Autónoma del Estado de Hidalgo
  • A. Bedolla-Jacuinde Instituto de Investigaciones Metalúrgicas Universidad Michoacana de San Nicolás de Hidalgo
  • J.M. Martínez-Vázquez Ingeniería Metalúrgica Universidad Politécnica de Juventino Rosas
  • A. Pérez-Perez Ingeniería Metalúrgica Universidad Politécnica de Juventino Rosas
  • T. Quintero-Azuara CIFUNSA

DOI:

https://doi.org/10.21640/ns.v6i11.76

Keywords:

SiO2 - refractory, slag penetration, induction furnace, scrap quality

Abstract

The refractory degradation on induction furnace walls at different points was studied. A SiO2 (98.8%) base refractory was analyzed with two different slag chemical composition through crucible and dipping laboratory degradation test and also applying an asymmetric modeling. The slag, refractory structure and slag penetration was analyzed by optical microscopy using reflecting light technique. The results demonstrated that slag penetration starts on the refractory pores produced by the sintering process and also by hollows generated by the came off grains. The modeling results evidenced that, with high frequency (240 Hz), a high Lorentz force (14.26 N) is originated but with a low liquid velocity (6 m/s) that have a perpendicular vector direction to the furnace walls, making pressure over the filtered slag.

Downloads

Download data is not yet available.

References

-Arahori T. y Suzuki T. (1987). Transformation of tridymite to cristobalite below 1470° C in silica refractories, Journal of Materials Science, (22-6): 2248 - 2252.

-Bhatia A. B.E. (2011), Overview of refractory Materials.

http://www.pdhonline.org/cgi-bin/quiz/courses/courselist.cgi?class_name=m158

(01 de Julio de 2013).

-Den Hoed P, (2000), An Anatomy of Furnace Refractory Erosion: Evidence from a Pilot-Scale Facility, Ponencia presentada en 58th Electric Furnace Conference, USA.

-Freund Mareike, (2010). Corrosion behaviour of refractory materials in the systems Cr2O3 and Cr2O3 – Al2O3 against glass melts in subject to their composition and the thermal conditions, Refractories World Forum, (2): 1-4.

-Hemrick James G and Peters KM, (2005), Energy saving strategies for the use of refractory materials in molten material contact, Energy Technology Perspectives, Ponencia presentada en Symposia held during TMS Annual Meeting and Exhibition. USA.

- Huger M, Ghassemi Kakroudi M, Gault C, y Chotard T. (2009). Anisotropic behaviour of andalusite particles used as aggregates on refractory castables. Journal of the European Ceramic Society, (29): 571–579

-Institute of Scrap Recycling Industries, (2013). Scrap specifications circular 2013. http://www.isri.org/ (01 de Julio de 2013).

-Jansson S. Brabie V. and Jonsson P. (2005). Corrosion mechanism and kinetic behavior of MgO-C refractory material in contact with CaO-Al2O3-SiO2-MgO slag. Scandinavian Journal of Metallurgy, (34-5): 283-292.

-Kalpakli Y. Kutmen, (2008). Effects of particles size distribution on the refractory properties and corrosion mechanism of ultra-low cement castables. Archives of Materials Science and Engineering, (2): 81-88.

-Kaupuzs J, Frishfelds V, Jakovics A and Nacke B, (2003), Influence of Melt Flow and Temperature on Erosion of Refractory and Deposit Formation in Induction Furnaces , Ponencia presentada en International Scientific Colloquium Modelling for Electromagnetic Processing, Hannover.

-Lee W. E. and Zhang S, (1999), Melt corrosion of oxide and oxide-carbon refractories, Internationals Metarilas Reviews, (44): 180-190.

- Liu Q, Zheng H, Lu C y Gao W. (2008). Corrosion resistance of high-alumina graphite based refractories to the smelting reduction melts, Journal of Materials Science and Engineering, (2): 49-53.

-Maity M. (2011). Updates on improving refractory lining service life. Hydrocarbon Processing, (1): 29-37.

-Mansuripur Masud. (2012). Trouble with the Lorentz Law of Force: Incompatibility with Special Relativity and Momentum Conservation. Physical Review Letters, (19): 1-5.

- Narasimham, A.V.L. (2007). Refractory lining failures in FECR furnaces an over view. Ponencia presentada en en Foro Alloy Industry, India.

-Pötschke J. y Deinet T. (2005). Premature corrosion of refractories by steel and slag. Ponencia presentada en Millennium Steel – Steel Making, Alemania.

-Ribeiro S. y Rodríguez J. A. (2010). The influence of microstructure on the maximum load and fracture energy of refractory castables. Ceramics International,( 36): 263–274

-Rigaud M. (2011). Corrosion Handbook. Corrosion of refractories and ceramics. Edited by R. Winston Revie, 387 – 398. Canada.

-Sinha P, and Chandra S, (1998), An Optimum Design of the Lining of a Medium Frequency Induction Melting Furnace, Int. Trans. Opl Res. (5): 255-259.

- Wang M.C, Hon M.H. y Hsu C.C. (2008). Reaction between Magnesia–Chrome Brick/Slag Interface by Electric Furnace Static Slag Corrosion Test. Materials Transactions, (49): 107-113.

-Williams, D.C. y Ko, Y.H. (2000). Reducing elephant´s foot erosion in coreless induction furnaces. Modern Casting, (1): 22 -26.

Downloads

Published

2014-10-08

How to Cite

Zuno-Silva, J., Bedolla-Jacuinde, A., Martínez-Vázquez, J., Pérez-Perez, A., & Quintero-Azuara, T. (2014). Laboratory scale study of uncommon degradation SiO2 refractories used on induction furnaces. Nova Scientia, 6(11), 113–134. https://doi.org/10.21640/ns.v6i11.76

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.