Transmission properties of Dirac electrons through Cantor monolayer graphene superlattices

Authors

  • Rogelio Rodríguez González Unidad Académica de Física, Universidad Autónoma de Zacatecas
  • J. C. Martínez-Orozco Unidad Académica de Física, Universidad Autónoma de Zacatecas
  • J. Madrigal-Melchor Unidad Académica de Física, Universidad Autónoma de Zacatecas
  • I. Rodríguez-Vargas Unidad Académica de Física, Universidad Autónoma de Zacatecas

DOI:

https://doi.org/10.21640/ns.v7i13.7

Keywords:

Graphene, Cantor multilayers, Transmittance, Transfer matrix

Abstract

In this work we use the transfer matrix method to study the tunneling of Dirac electrons through aperiodic monolayer graphene superlattices. We consider a graphene sheet deposited on top of slabs of Silicon-Oxide (SiO2) and Silicon-Carbide (SiC) substrates, in which we applied the Cantor’s series. We calculate the transmittance for different fundamental parameters such as: starting width, incident energy, incident angle and generation number of the Cantor’s series. In this case, the transmittance as function of energy presents self-similar features as a function of the generation number. We also compute the angular distribution of the transmittance for fixed energies finding a self-similar patterns between generations. Finally, we calculate the scaling factor for some transmittance spectra, which effectively show scalability

Downloads

Download data is not yet available.

References

Geim, A. K., and K. S. Novoselov. 2007. The rise of graphene. Nature Mater. 6:183-191.

Giovannetti, G., P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink. 2007.

Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functionalcalculations. Phys. Rev. B 76:73103.

Katsnelson, M. I., K. S. Novoselov and A. K. Geim. 2006. Chiral tunneling and the Klein paradox in graphene. Nat. Phys. 2:620-625.

Lavrinenko, A. V., S. V. Zhukovsky, K. S. Sandomirski, and S. V. Gaponenko. 2002.

Propagation of classical waves in nonperiodic media: Scaling properties of an optical Cantor filter. Phys. Rev. E 65: 036621.

Novoselov, K. S., A. K. Geim, S. V. Mrozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.

Grigorieva, and A. A. Firsov. 2004. Electric field effect in atomically thin carbon films. Science 306:666-669.

Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. 2005. Two-dimensional gas of massless Dirac fer-mios in graphene. Nature 438:197-200.

Schedin, F., A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov. 2007. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6:652-655.

Viana Gomes, J. and N. M. R. Peres. 2008. Tunneling of Dirac electrons through spatial regions of finite mass. J. Phys.: Condens. Matter 20: 325221.

Wallace, P. R. 1947. The band theory of graphite. Phys. Rev. 71:622-634.

Yeh, P. 2005. Optical Waves in Layered Media. Wiley-Interscience.

Zhang, Y., Y. -W. Tan, H. L. Stormer, and P. Kim. 2005. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201-204.

Zhou, S. Y., G. -H. Gweon, A. V. Fedorov. P. N. First, W. A. de Heer, D. -H. Lee, F. Guinea, A. H. Castro-Neto, and A. Lanzara. 2007. Substrate-induced bandgap ope-ning in epitaxial graphene. Nat. Mater. 6:770-775

Downloads

Published

2014-11-18

How to Cite

Rodríguez González, R., Martínez-Orozco J. C., Madrigal-Melchor, J., & Rodríguez-Vargas I. (2014). Transmission properties of Dirac electrons through Cantor monolayer graphene superlattices. Nova Scientia, 7(13), 20–31. https://doi.org/10.21640/ns.v7i13.7

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.