Biophysics and nutraceutical quality of tomato fruits produced with organic substrates

Authors

  • Lilia Salas-Pérez Universidad Politecnica de Gomez Palacio
  • José Antonio González-Fuentes Universidad Autónomal Agraria Antonio Narro
  • Mario García-Carrillo Universidad Autónoma Agraria Antonio Narro
  • Ernesto Sifuentes-Ibarra Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias
  • Saúl Parra-Terrazas Universidad Autónoma de Sinaloa
  • Pablo Preciado-Rangel Universidad Autónoma Agraria Antonio Narro

DOI:

https://doi.org/10.21640/ns.v8i17.677

Keywords:

Organic substrates, Solanum lycopersicum, lycopene, antioxidant capacity

Abstract

The growing concern of the public about the negative effects of agricultural activities on the environment has caused that crop production; it is being more sustainable way; especially in the management of fertilization. About compost; it is an organic fertilizer used as a source of nutrients and as a component of substrates in protected agriculture. The aim of this study was to evaluate the effect of different substrates based on composted cattle (C) mixed with river sand (A) on the performance and biophysics and nutraceutical quality of tomato fruits produced under conditions in greenhouses. The percentages of the substrates were: 25:75; 50:50; 75:25 of compost and sand (C:S). The control was used Steiner nutrient solution in sand. The variables evaluated were yield; average fruit weight; polar and equatorial diameter; thickness of pericarp and soluble solid total (biophysics quality). The nutraceutical quality was determined by analyzing lycopene and antioxidant activity. The highest yield and the better biophysic quality of the fruits were presented with the use of conventional nutrient solution. Instead; the fruits obtained from compost: sand 75:25 obtained the highest values of soluble solids and antioxidant capacity; 12.5% higher soluble solids and 27% higher antioxidant capacity compared with those obtained with Steiner nutrient solution. Compost with sand combination for use as organic substrate is a viable organic greenhouse tomato production alternative as performance and quality are acceptable. Also; due the potential for use in certified organic agriculture; users will eventually be able to achieve premium prices and improve the cost / benefit ratio; providing a potential competitive marketing for the producer; while reducing the use of inorganic inputs with what it contributes to the preservation of the environment.

Downloads

Download data is not yet available.

Author Biographies

José Antonio González-Fuentes, Universidad Autónomal Agraria Antonio Narro

Departamento de Horticultura

Mario García-Carrillo, Universidad Autónoma Agraria Antonio Narro

Departamento de Suelos

Ernesto Sifuentes-Ibarra, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias

Investigador

Saúl Parra-Terrazas, Universidad Autónoma de Sinaloa

Investigador

Pablo Preciado-Rangel, Universidad Autónoma Agraria Antonio Narro

Departamento de Horticultura

References

Abad M; Noguera P; Burés S. (2001). National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresource Technology 77:197-200.

Al–Omran AM; AL–Harbi AR; Wahb–Allah MA; Nadeem M; AL–Eter A. (2010). Impact of irrigation water quality; irrigation systems; irrigation rates and soil amendments on tomato production in sandy calcareous soil. Turk Journal Agriculture 34: 59–73.

Ao Y; Sun M; Li Y. (2008). Effect of organic substrates on available elemental contents in nutrient solution. Bioresource Technology 99: 5006-5010.

Arias R; Lee TCh; Logendra L; Janes H. (2000). Correlation of lycopene measured by HPLC with the L; a; b color reading of a hidroponic tomato and the relationship of maturity with color and lycopene content. Journal of Agricultural Food Chemistry 48: 1697-1702.

Atiyeh RM; Edwards CA; Subler S; Metzger JD. (2000). Earthworm-processed organic wastes as components of horticultural potting media for growing marigold and vegetable seedlings. Composta Science and Utilization 8:215–223.

Azarmi R; Sharifi ZP; Satari M. (2008). Effect of vermicompost on growth; yield and nutrient status of tomato (Lycopersicom esculentum). Pak J Biological Science 1: 1797-1802.

Azcón-Bieto J y Talón M. (2003). Fundamentos de Fisiología Vegetal. McGrawHill.

Barak; J. D.; & Liang; A. S. (2008). Role of soil; crop debris; and a plant pathogen in Salmonella enterica contamination of tomato plants. PLoS One 3: e1657 p4.

Becvort-Azcurra A; Fuentes-Lara LO; Benavides-Mendoza A; Ramírez H; Robledo-Torres V; Rodríguez-Mendoza MN. (2012). Aplicación d Selenio en Tomate: Crecimiento; Productividad y Estado Antioxidante del Fruto. Terra Latinoamericana 30: 291-301. Bender ÖD. (2008). Growth and transpiration of tomato seedlings grown in Hazelnut Husk compost under water–deficit stress. Compost Science & Utilization 16:125–131.

Brand-Williams W and Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. U. Technol.; 28: 25-30.

Cadahia LC. (2000). Cultivos hortícolas y ornamentales. 2a. Ed. Ediciones Mundi–Prensa. México; D.F.

Candelas-Cadillo MG; Alanís-Guzmán MGJ; Bautista-Justo M; Del Río-Olague F; García-Díaz C. (2005). Contenido de licopeno en jugo de tomate secado por aspersión. Revista Mexicana de Ingeniería Química 4: 299-307.

Candelas-Cadillo MG; Del Río Olague F; Guzmán MG de J. (2006). Cuantificación de licopeno y otros carotenoides en tomate y polvo de tomate. Revista Mexicana de Agronegocios 19: 1-11.

Carrillo-López; A; Yahia EM. (2014). Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass Spectrometry. Journal of food science and technology 51: 2720-2726.

Chaoui HI; Zibilske LM; Ohno T. (2003). Effects of earthworm casts and composta on soil microbial activity and plant nutrient availability. Soil Biology and Biochemistry 35: 295-302.

Claassen VP. and Carey JL. (2004). Regeneration of nitrogen fertility in disturbed soils using composts. Compost Science & Utilization 12: 145-152.

Coelho EL; Fontes PC; Finger FL. (2003). Qualidade do fruto de melão rendilhado em função de doses de nitrogênio. Bragantia 62: 173-178.

Cocaliadis; MF; Fernández-Muñoz R; Pons C; Orzaez D; Granell A. (2014). Increasing Tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?. Journal of Experimental Botany 65: 4589-4598.

Carrera LM; Buyer JS; Vinyard BRYAN; Abdul-Baki AA; Sikora LJ; Teasdale JR. (2007). Effects of cover crops; compost; and manure amendments on soil microbial community structure in tomato production systems. Applied Soil Ecology; 37(3); 247-255.

Carrillo-López A; and Yahia EM. 2014. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass Spectrometry. Journal of Food Science and Technology; 51(10); 2720–2726.

Dorai M; Papadopoulos AP; Gosselin A. (2001). Influence of electric conductivity management on greenhouse tomato yield and fruit quality. Agronomie 21: 367-383.

Fortis HM; Preciado RP; García HJL; Navarro BA. (2012). Sustratos orgánicos en la producción de chile pimiento morrón. Rev Mex de Ciencias Agríc 3: 1203-1216.

García-Enciso EL; La Rosa-Ibarra D; Mendoza-Villarreal R; Quezada-Martin MR; Arellano-García M. (2014). Efecto de una película plástica modificada en algunos aspectos bio-químicos de un cultivo de tomate (Solanum lycopersicum L.). Ecosistemas y Recursos Agropecuarios 1:151-162.

Gautier H; Diakou-Verdin V; Bernard C; Reich M; Buret M; Bourgad F; Poessel JL; Caris-Veyrat C; y Genard M. (2008). How does tomato quality (sugar; acid; y nutritinal quality) vary with ripening stage; temperature; y irradiance? Journal of Agricultural and Food Chemistry 56:1241 –1250.

Gopinath KA; Saha BL. Mina HP; Gupta HS. (2009). Bell pepper yield and soil properties during conversion from conventional to organic production in Indian Himalayas. Scientia Horticulturae 122: 339-345.

Hartmann H. and Kester D. (2002). Plant propagation. Principles and practices. Prentice Hall. New Jersey. 880 p.

Hartz T; and Johnstone P. (2006). Nitrogen availability from high-nitrogen-containing organic fertilizers. HortTechnology 16: 39-42.

Hernández MGI; Salgado GS; Palma LDJ; Lagunes E; Ruiz RO. (2008). Vinaza y composta de cachaza como fuente de nutrientes en caña de azúcar en un gleysol mólico de Chiapas; México. Interciencia 33: 855-860.

Illera VM; Mosquera MEL; Fabal AL; Salas-Sanjuan MC. (2012). Acondicionamiento de un composta salino para su uso como sustrato de cultivo. Recursos Rurais 8:13-19.

Jaramillo J; Rodríguez VP; Guzmán M; Zapata M. (2006). El cultivo de tomate bajo invernadero. Corpoica; Centro de Investigación La Selva; Rionegro (Antioquia; Colombia). 48 p.

Lazcano C; Arnold J; Tato A; Zaller J; Domínguez J. (2009). Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology. Spanish Journal of Agricultural Research 7: 944-951.

Luna-Guevara ML; y Delgado-Alvarado A. (2014). Importancia; contribución y estabilidad de antioxidantes en frutos y productos de tomate (Solanum lycopersicum L.). Avances en Investigación Agropecuaria 18: 51-66.

MartÌnez-Valverde I; Periago MJ; Provan G; Chesson A. (2002). Phenolic compounds; lycpene and antioxidant activity in comercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food Agriculture 82: 323-330.

Moreno RA; Gómez FL; Cano RP; Martínez CV; Reyes CJL; Puente MJL; Rodríguez ND. (2008). Genotipos de tomate en mezclas de vermicomposta: arena en invernadero. Terra Latinoamericana 26: 103-109.

Moreno R; Aguilar D; Luévano G. (2011). Características de la agricultura protegida y su entorno en México. Revista Mexicana de Agronegocios 29: 763-774.

NOP (National Organic Program). (2002). Programa Nacional Orgánico; Reglamento Final. 7CFR Parte 205 – Programa Nacional Orgánico. Departamento de Agricultura de Estados Unidos.

Otero N; Vitoria L; Soler A; Canals A. (2005). Fertilizer characterization: major; trace and rare earth elements. Applied Geochemistry 20: 1473–1488.

Pardossi A; Malorgio F; Incrocci L; Campiotti CA; Tognoni F. (2002). A comparison between two methods to control nutrient delivery to greenhouse melons grown in recirculating nutrient solution culture. Scientia Horticulturae 92: 89-95.

Perdomo F; Cabrera Fránquiz F; Cabrera J; Serra-Majem L. (2012). Influencia del procedimiento culinario sobre la biodisponibilidad del licopeno en el tomate. Nutrición Hospitalaria 27: 1542-1546.

Periago MJ; Martínez-Valverde I; Ros G; Martínez C; López G. (2001). Propiedades químicas; biológicas y valor nutritivo del licopeno. Anales de Veterinaria de Murcia 17: 51-66.

Plaut Z; Grava A; Yehezkel Ch; Matán E. (2004). How do salinity and water stress affect transport of water assimilates and ions to tomato fruits?. Plant Physiology 122: 429-442.

Rashid A and Khan RU. (2008). Comparative effect of varieties and fertilizer levels on Barley (Hordeum vulgare). International Journal of Agriculture and Biology 10: 124-126.

Ruiz-López GA; Qüesta AG; Rodriguez SDC. (2010). Efecto de luz UV-C sobre las propiedades antioxidantes y calidad sensorial de repollo mínimamente procesado. Revista Iberoamericana de Tecnología Postcosecha 11: 101-108.

Salisbury FB; Ross CW. (1992). Stress physiology. Plant Physiology. Wadsworth Publishing Company.

Santiago J; Mendoza M; Borrego F. (1998). Evaluación de tomate (Lycopersicum esculentum; Mill.) en invernadero: criterios fenológicos y fisiológicos. Agronomía Mesoamericana 9: 59-65.

SAS; Statistic Analysis System 9.0. Program. Stat Soft. Inc. Cary; NC; EEUU. 1999.

Sepúlveda-Jiménez G; Porta-Ducoing H; Rocha-Sosa M. (2003). La participación de los metabolitos secundarios en la defensa de las plantas. Revista Mexicana de Fitopatología 21: 355-363.

Stanhill G. (1990). The comparative productivity of organic agriculture. Agriculture; Ecosystems & Environment 30: 1-26.

Vallverdú-Queralt A; Medina-Remón A; Casals-Ribes I; Lamuela-Raventos RM. (2012). Is there any difference between the phenolic content of organic and conventional tomato juices? Food Chemistry 130: 222-227.

Waliszewski KN y Blasco G. (2010). Propiedades nutraceúticas del licopeno. Salud Pública de México 52: 254-265.

Willer H. and Yussefi M. (2007). The world of organic agriculture; statistics and emerging trends 2007. International Federation of Organic Agriculture Movements (IFOAM); Bonn; Germany.

Winter CK and Davis SF (2006) Organic Foods. Journal of Food Science 71: 117-124.

Yaalon DH; Arnold RW. (2000). Attitudes toward soils and their societal relevance: then and now. Soil Science 165: 5–12.

Published

2016-11-16

How to Cite

Salas-Pérez, L., González-Fuentes, J. A., García-Carrillo, M., Sifuentes-Ibarra, E., Parra-Terrazas, S., & Preciado-Rangel, P. (2016). Biophysics and nutraceutical quality of tomato fruits produced with organic substrates. Nova Scientia, 8(17), 310–325. https://doi.org/10.21640/ns.v8i17.677

Issue

Section

Natural Sciences and Engineering

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.