Alternative corrosion protection of AISI 310S by aluminium coating under conditions of separator plates in molten carbonate fuel cell

Authors

DOI:

https://doi.org/10.21640/ns.v8i17.608

Keywords:

corrosion, fuel cell, separator plates, stainless steel, molten carbonate.

Abstract

Introduction: The molten carbonate fuel cell operates at 650 ° C. Consist of a NiO porous lithiated cathode, an cast eutectic mixture of lithium carbonate  (Li2CO3) and potassium carbonate (K2CO3)in an electrolytic matrix of aluminum oxide lithiated (LiAlO2)and a porous Ni anode. Unfortunately in separator plates between each cell corrosion problems are presented. Before that, an AISI 310S stainless Steel coating was studied in terms of a separator plate in a MCFC.

Method: AISI 310S stainless steel was used as substrate (sample A), applying an Al coating with (B) and without heat treatment (C). They were exposed in molten carbonate (62 mol% Li2CO-38 mol% K2CO3) at 650 ° C in alumina crucibles. Electrochemical behavior was studied with Electrochemical Impedance Spectroscopy technique. For analysis of the impedance diagrams, the simulation software "Equivalent Circuit Boukamp" was used. The cross section of the corroded samples were characterized by Scanning Electron Microscopy (SEM) and the products formed by X-ray Diffraction (XRD).

Results: EIS diagrams show increases and decreases in the semicircles formed at high frequencies indicative of dissolution of the outer layer, increase and decrease of the resistance of the latter as well as the possible breakage of it. XRD technique presented phases  LiFeO2, LiCrO2, g-LiAlO2 and a- LiAlO2, and intermetallic phases for different sample conditions. Similarly, the SEM analysis showed the thicknesses of each of the layers formed.

Discussion or Conclusion: In the sample A, LiFeO2 y LiCrO2 layers were formed after 200 hours of exposure. LiCrO2 layer increases by Li diffusion inward and outward Cr. In the samples B and C, the LiCrO2phase was found in the outer layer. In the sample B, LiAlO2 layer is very thin and heterogeneous, indicating what may be susceptible to the electrolyte. Furthermore, the layer that has forme don the simple C has been thicker. The effect of heat treatment, aimed at the diffusion of Al into the interior, has been acceptable. The coating application is an alternative to extend the shelf life of these materials. 

Downloads

Download data is not yet available.

Author Biography

Ricardo Orozco-Cruz, Universidad Veracruzana

Dr. Ricardo Orozco Cruz
Responsable C.A-245-Ingeniería de Corrosión y ProtecciónUnidad AntiCorrosión-Instituto de Ingeniería
Universidad Veracruzana
S.S. Juan Pablo II S/N
Zona Universitaria
Fracc. Costa Verde  C.P. 94294
Boca del Río, Veracruz, México.
Tel. (52) 229 7752000 ext. 22214, 22228
Fax. 22216
Email: rorozco@uv.mxriorozcoc@yahoo.com.mxwww.uv.mx/personal/rorozco

 

References

Appleby, A. J. & Nicholson, S. B. (1977). J. Electrochem. Soc. 83 (309)

Appleby, A. J. & Nicholson, S. B. (1980). J. Electrochem. Soc. 112 (71)

Biedenkopf, P., Spiegel M. & Grabke, H. J. (1997). Mater. and Corr. 48 (11) 731-743 DOI: 10.1002/maco.19970481103

Boukamp, Bernard, A. (1986) A Package for Impedance/Admittance Data Analysis, Solid State Ionics (18&19) 136-140

Giordano, N., Freni, S., Quagliata, R., Cavallaro, S. and Cabonaro, P. (1988). J. Electrochem. Soc. 135 (910).

Indacochea, Ernesto, J., Bloom, Ira, and Krumpelt, M. (1998). J. Mater. Res. 13 (7)

Keijzer, M., Hemmes. K.,. Van der Put., P. J. J. M., De Wit., J. H. W. and Schoonman, J. (1997). Corrosion Sc. 39 (3) 483-494.

Kofstad, P. (1988). High temperature corrosion, Elsevier Applied Science Publishers Ltd.

Lu, S. H. and Selman, J. R. (1990). J. Electrochem. Soc. 137, 1125

Nishina, T., Uchida., I. and Selman, J. R. (1994). J. Electrochem. Soc. 14, 1191

Orozco-Cruz, R., (2003). Corrosion de aleaciones utilizadas en platos separadores de celdas de combustible de carbonatos fundidos. Tesis de Maestría en Ciencia de Materiales, Instituto de Investigaciones en Materiales, UNAM.

Peelen, W. H. A., Hemmes, K. and De Wit, J. H. W. (1997). Electrochim. Acta 43, 763

Pérez, F. J, Duday, D., Hierro, M. P., et al. (2002). Surface and Coatings Technology 161, 293-301

Pérez, F. J, Hierro, M. P., Duday, D., et al. (2000). Oxidation of Metals 53 (3/4) 375-398

Schemalzried, H. (1962). Z. Phisik. Chem. NF 33, 11

Smith, S. W., Vogel, W. M. and Kapelmer, S. (1990). J. Electrochem. Soc. 129, 1668

Selman, J. R. and Marianowski, L. G. (1982). Molten Salt technology. En: D. H. Lovering. (323-393) New York: Plenum Press.

Shores, D. A. and Singh, P. (1984). Proc. Electrochem. Soc. Electrochem. Society. (271-296). USA: Pennington N.J.

Spiegel, M., Biedenkopf, P. and Grabke, H. J. (1997). Corrosion Science, 39 (7) 1193-1210.

Swaroop, R. B., Sim, J. W. and Kinoshita, K. (1978). Electrochemical Science and Technology. J. Electrochem. Soc. 125, 1799-1800.

Urushibata, H. and Murahashi, T. (1992). ECN Contributions to the International Fuel Cell Conference. En: K. Joon, P.C. Van der Laag, y D. Jansen, Makuhari, (Paper III-E-2). Japon

Yamamasu, Y., Kakihara, T., Kasai, E. and Morita, T. (1992). ECN Contributions to the International Fuel Cell Conference. En: K. Joon, P. C. Van der Laag, y D. Jansen, Makuhary, (Paper III-B-2). Japan.

Yuh, C. (1990). Proc. Electrochem. Soc. Electrochemical Soc. 90 (16) 368-373.

Yuh, C., Singh, P., Paetsch, L. and Maru, H.(1986). Corrosion 87. 17 (21) 276.

Published

2016-11-16

How to Cite

Orozco-Cruz, R., Mejía-Sánchez, E., & Galván-Martínez, R. (2016). Alternative corrosion protection of AISI 310S by aluminium coating under conditions of separator plates in molten carbonate fuel cell. Nova Scientia, 8(17), 290–309. https://doi.org/10.21640/ns.v8i17.608

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.