Growth promotion of Capsicum annuum plants by zinc oxide nanoparticles

Authors

  • B. Méndez-Argüello
  • I. Vera-Reyes
  • E. Mendoza-Mendoza
  • L. A. García-Cerda
  • B. A. Puente-Urbina
  • Ricardo Hugo Lira Saldívar CENTRO DE INVESTIGACIÓN EN QUÍMICA APLICADA https://orcid.org/0000-0002-8045-2052

DOI:

https://doi.org/10.21640/ns.v8i17.544

Keywords:

Agronanotechnology, nanomaterials, nanofertilizers, horticulture, agrochemicals, agriculture systems, nanopesticides, biopesticides, nanoparticles, antimicrobial, sol-gel method, biomass, auxins, cell elongation, phytoestimulant, cytokinins, gibberellins, antioxidant enzymes

Abstract

The applications that nanotechnology (NT) has on agriculture systems are diverse and promising because they have the potential to contribute in maintaining its productivity and efficiency by reducing costs and the quantity of synthetic agrochemicals employed. For instance, it is important to emphasize that by means of NT it is possible to develop encapsulated nanopesticides, stabilization of biopesticides and slow-release fertilizers. Nanoparticles of zinc oxide and silver are studied for their potential as antimicrobial, nanofertilizers and growth promoters of agricultural plants. Therefore, the aim of this study was to evaluate the effect of pure zinc oxide nanoparticles (ZnONPs) and ZnONPs with silver (ZnONPs + Ag) on growth of C. annuum plants. The sol-gel method was used to study the synthesis and characterization of NPs. Foliar application of ZnONPs to pepper plants was done manually once a week. The experimental design was completely at random with four treatments and five repetitions. Data collected were analyzed by ANOVA and Tukey's multiple range tests (p≤ 0.05). Compared to control plants without the application of ZnONPs, treatments exposed to the application of ZnONPs + Ag (2.5%), were those that had a significant higher shoot and root growth, as well greater biomass production, with higher values of height (16.8%), leaf area (30.3%), total biomass production (59.5%), root dry biomass (112.5%), stem dry biomass (76%) and root length (24.4%). As compared to control plants, those treated with ZnONPs + Ag (2.5%) reported a quantitative increase of chlorophyll index (8%) and leave number (32.6%). The biological effect of the applied NPs, could be related to the zinc activity as a precursor in the production of auxins, which in turn could promote cell division and elongation, as well by its influence on the reactivity of indol acetic acid, which acts as hormonal phytoestimulant. Also ZnONPs might be involved in the biosynthesis of cytokinins and gibberellins; as well on the induction of greater activity of antioxidant enzymes.

Downloads

Download data is not yet available.

Author Biography

Ricardo Hugo Lira Saldívar, CENTRO DE INVESTIGACIÓN EN QUÍMICA APLICADA

EDUCACIÓN PROFESIONAL Doctorado: Ph.D. University of California, Davis, USA. Maestría: M.C. Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), Monterrey, N. L. México. Licenciatura: Ingeniero Agrónomo. Universidad Autónoma Agraria Antonio Narro (UAAAN), Saltillo, Coah. México. LIBROS PUBLICADOS 1. NANOTECNOLOGÍA EN AGRICULTURA Y ALIMENTOS. Agronanotecnología. 2014. Editorial Académica Española. Lira-Saldivar, R.H., Hernández-Suárez, M. y Carrasco-Flores, E. ISBN 978-3-659-08491-1. 97 páginas. 2. AGROPLASTICULTURA. Plásticos Degradables Para la Agricultura. 2013. Editorial Académica Española. López-Tolentino, G. y Lira-Saldivar, R.H. ISBN 978-3-659-07772-2. 156 páginas. 3. SOLARIZACIÓN Y BIOFUMIGACIÓN. Control Ecológico de Malezas y Enfermedades del Suelo. 2013. Editorial Académica Española. Lira-Saldivar, R.H., Lira-Valdes, N. y Hernández-Suárez, M. ISBN 978-3-659-06563-7. 145 páginas. 4. ACTIVIDAD ANTIMICROBIAL DE PLANTAS DE LAS ZONAS ÁRIDAS DE MÉXICO. 2012. Editorial Académica Española. Lira-Saldivar, R.H., Lira-Valdes, N. y Hernández-Suárez, M. ISBN 978-3-659-05317-7. 113 páginas. 5. PARADIGMAS: La Veta del Cambio y la Sustentabilidad. 2012. Editorial Académica Española. Torres-Medina, J.G. y Lira-Saldivar, R.H. ISBN: 978-3-8484-7717-3. 142 páginas. 6. TECNOLOGÍAS SUSTENTABLES EN SEMILLAS. Editores: Ruiz-Torres N.A. y Lira-Saldivar R.H. 2008. 234 Páginas. ISBN: 978-607-7692-02-7. 7. DETECCIÓN, DIAGNÓSTICO Y MANEJO DE LA ENFERMEDAD PUNTA MORADA DE LA PAPA. Editores: Flores-Olivas A. y Lira-Saldivar, R.H. 2008. Ediciones Parnaso. Málaga, España. pp. 1-136. ISBN-10: 84-96662-34-9. 8. AGRICULTURA SUSTENTABLE Y BIOFERTILIZANTES. Editores: Lira-Saldivar, R.H. y Torres-Medina, J.G. 2007. Serna Editores. México. Octubre de 2007. pp. 1-220. ISBN: 968-844-045-0. http://es.scribd.com/doc/48138713/Agricultura-Sustentable-y-biofertilizantes 9. BIOPLAGUICIDAS Y CONTROL BIOLÓGICO. Editor: Lira-Saldivar, R.H. 2007. Serna Editores. México. Octubre de 2007. pp. 1-214. ISBN: 968-844-054-X. http://funpronl.org.mx/Biblioteca/bioplagicidascontrolbiologico.pdf 10. FISIOLOGÍA VEGETAL. Autor: Lira-Saldivar, R.H. Febrero 1994. Editorial Trillas, México. Febrero de 1994. pp 1-237. ISBN 968-24-4803-4. ÚLTIMOS ARTICULOS PUBLICADOS EN REVISTAS CON ARBITRAJE 1. Lira-Saldívar R.H., Ramos-Hernández G., Peralta-Rodríguez, R.D., Cortez-Mazatan G.J., Vera-Reyes I., Solis-Gaona, S., Méndez-Arguello, B. 2015. Prevención de la enfermedad causada por Botrytis cinerea en frutos de tomate durante poscosecha mediante un recubrimiento polimérico. Revista Internacional de Investigación e Innovación Tecnológica, 13: 24-30. 2. Lira-Saldivar, R.H., Hernández-López, A., Valdez-Aguilar, L.A., Ibarra-Jiménez, L., Cárdenas-Flores, A., Hernández-Suárez, M. 2014. Azospirillum brasilense and Glomus intraradices co-inoculation stimulates growth and yield of cherry tomato under shadehouse conditions. Phyton International Journal of Experimental Botany, 83: 133-138. 3. Ramos-Hernández G., Lira-Saldivar, R.H., Peralta, R.D., Cortez, G.Y., Cárdenas, A. 2014. Extension of postharvest shelf-life of tomato fruits using biocompatible synthetic latex. Phyton International Journal of Experimental Botany, 83: 139-143. 4. Hernández-Castillo, F.D., Lira-Saldivar, R.H., Gallegos-Morales, G., Hernández-Suárez, M., Solis-Gaona, S. 2014. Biocontrol de la marchitez del chile con tres especies de Bacillus y su efecto en el crecimiento y rendimiento. Phyton International Journal of Experimental Botany, 83: 49-55. 5. Vásquez-Santiago, E., Lira-Saldivar, R.H., Valdéz-Aguilar, L.A., Cárdenas-Flores, A., Ibarra-Jiménez, L., González-Sandoval, D.C. 2014. Respuestas del pepino a la fertilización biológica y mineral con y sin acolchado plástico en condiciones de casa sombra. Revista Internacional de Investigación e Innovación Tecnológica RIIIT, 2 (10). 6. Lira-Saldivar, R.H., Moreno-León, K., Mendoza-Mendoza, E., Hernández-Suárez, M., García-Cerda, L.A., Puente-Urbina, B. 2014. Síntesis y efecto antifúngico de nanohíbridos zinc/plata contra los hongos fitopatógenos Botrytis cinerea y Rhizoctonia solani. 36 Congreso Internacional de Metalurgia y Materiales. Noviembre 5–7, Saltillo, Coah., Mexico. ISSN 2007–9540. Pag. 339–350. 7. Lira-Saldivar, R.H., Esparza-Rivera, E., Hernández-Suárez, M., Betancourt-Galindo, R., García-Cerda, L.A., Puente-Urbina, B. 2014. Actividad antimicrobial de nanopartículas de cobre y óxido de zinc contra bacterias y hongos fitopatógenos. 36 Congreso Internacional de Metalurgia y Materiales. Noviembre 5–7, Saltillo, Coah., Mexico. ISSN 2007–9540. Pag. 10–21. 8. Lira-Saldivar, R.H., Corrales-Flores, J., Hernández-Suárez, M., Betancourt-Galindo, R., García-Cerda, L.A., Puente-Urbina, B. 2014. Actividad antifúngica de nanopartículas de cobre y óxido de zinc-plata contra Botrytis cinerea. VII Congreso Internacional de Metalurgia y Materiales. Monclova, Coah. Abril 3-5 de 2014. 9. Betancourt, R. Reyes, P.Y., Puente, B., Ávila-Orta, C., Rodriguez, O., Cadenas, G., Lira-Saldivar, H., Garcia-Cerda, L.A. 2014. Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties. Journal of Nanomaterials. Volume 2013, Article ID 980545, 5 pages http://dx.doi.org/10.1155/2013/980545. 10. Hernández-Gómez, E., Valdez-Aguilar, L.A., Castillo-González, A.M., Colinas-León, M.T., Cartmill, D.L., Cartmill, A.D., Lira-Saldivar, R.H. 2013. Supplementary potassium sustains fruit yield in bell pepper under high ammonium nutrition. HortScience, 48(12): 1-7. 11. Ibarra-Jiménez, L., Lira-Saldivar, R.H., Cárdenas-Flores, A., Valdez-Aguilar, L.A. 2012. Soil solarization enhances growth and yield in dry beans. Acta Agriculturae Scandinavica Section B – Soil and Plant Science, 78: 345-350. 12. Ibarra-Jiménez, L., Valdez-Aguilar, L.A., Cárdenas-Flores, A., Lira-Saldivar, R.H., Lozano-del Río, J. and Lozano-Cavazos, C. 2012. Influence of double cropping on growth and Yield of dry beans with colored plastic mulches. Chilean Journal of Agricultural Research, 72(4):470-475. 13. L. Ibarra-Jiménez; Lira-Saldivar R.H., Valdez Aguilar L.A., y Lozano del Río, J. 2011. Colored plastic mulches affect soil temperature and tuber production of potato. Acta Agriculturae Scandinavica Section B – Soil And Plant Science, 61: 365-371. 14. Cortez-Mazatán, G.Y.; Valdez-Aguilar, L.A., Lira-Saldivar, R.H., Peralta-Rodríguez, R.D. 2011. Polyvinyl acetate as an edible coating for fruits. Effect on selected physiological and quality characteristics of tomato. Revista Chapingo Serie Horticultura, 17: 15-22. 15. Hernández-Suárez, M., Hernández-Castillo, F.D., Gallegos-Morales, G., Lira-Saldivar R.H., Rodríguez-Herrera R., Aguilar, C.N. 2011. Biocontrol of soil fungi in tomato with microencapsulates containing Bacillus subtilis. American Journal of Agricultural and Biological Sciences, 6: 189-195.

References

Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C.M., José-Yacamán, M., Peralta-Videa, J.R. y Gardea-Torresdey, J.L. (2015). Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Science of the Total Environment, 515: 60-69.

Burman, U., Saini, M. y Kumar, P. (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological and Environmental Chemistry, 95: 605-612.

Daudi, A., Cheng, Z., O’Brien, J.A., Mammarella, N., Khan, S., Ausubel, F.M. y Bolwell, G.P. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity.The Plant Cell, 24: 275-287.

Dimkpa, C.O., McLean, J.E., Britt, D.W. y Anderson, A.J. (2015). Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology, 24: 119-129.

Ditta, A., Arshad, M., y Ibrahim, M. (2015). Nanoparticles in sustainable agricultural crop production: Applications and Perspectives. In Nanotechnology and Plant Sciences (pp. 55-75). Springer International Publishing.

Dubey, A. y Mailapalli, D.R. (2016). Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In Sustainable Agriculture Reviews (pp. 307-330). Springer International Publishing.

Duran, N. y Marcato, P.D. (2013). Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science & Technology, 48: 1127-1134.

Grillo, R., Abhilash, P.C. y Fraceto, L.F. (2016). Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology, 16: 1231-1234.

He, L., Liu, Y., Mustapha, A. y Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166: 207-215.

Hoagland, D.R. y Arnon, D.I. (1950). The water-culture method for growing plants without soil. Circular and California Agricultural Experiment Station, 347: 32-33.

Kumar, G.D., Natarajan, N. y Nakkeeran, S. (2016). Antifungal activity of nanofungicide Trifloxystrobin 25%+ Tebuconazole 50% against Macrophomina phaseolina. African Journal of Microbiology Research, 10: 100-105.

Liu, R. y Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514: 131-139.

Liu, R., Zhang, H. y Lal, R. (2016). Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) Seed germination: Nanotoxicants or nanonutrients?. Water, Air, & Soil Pollution, 227: 1-14.

Lin, D. y Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science and Technology, 42: 5580-5585.

McDaniel, B.K. y Binder, B.M. (2012). Ethylene receptor 1 (ETR1) is sufficient and has the predominant role in mediating inhibition of ethylene responses by silver in Arabidopsis thaliana. Journal of Biological Chemistry, 287: 26094-26103.

Mukherjee, A., Peralta-Videa, J.R. Bandyopadhyay, S. Rico, C.M., Zhao, L. y Gardea-Torresdey, J.L (2014). Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics, 6: 132-138.

Naderi, M.R., y Danesh-Shahraki, D.A. (2013). Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences, 5: 2229-2232.

Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.J. y Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17: 372-386.

Pandey, A.C., Sanjay, S.S. y Yadav, R.S. (2010). Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. Journal of Experimental Nanoscience, 5: 488-497.

Panwar, J., Jain, N., Bhargaya, A., Akthtar, M.S. y Yun, Y.S. (2012). Positive effect of zinc oxide nanoparticles on tomato plants: A step towards developing nano-fertilizers. International Conference on Environmental Research and Technology (ICERT). Malaysia.

Patel, N., Desai, P., Patel, N., Jha, A. y Gautam, H.K. (2014). Agronanotechnology for plant fungal disease management: A review. International Journal Current Microbiology and Applied Sciences, 3: 71-84.

Prasad, T.N., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R. y Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35:905-927.

Rajiv, P., Rajeshwari, S. y Venckatesh, R. (2013). Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112: 384-387.

Rehman, H., Aziz, T., Farooq, M., Wakeel, A. y Rengel, Z. (2012). Zinc nutrition in rice production systems: a review. Plant and Soil, 361: 203-226.

Sabir, S., Arshad, M. y Chaudhari, S.K. (2014). Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. The Scientific World Journal, 1: 1-8.

Salama, H.M. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3: 190-197.

Sedghi, M., Hadi, M. y Toluie, S.G. (2013). Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Annals of West University of Timişoara, Ser. Biology, 16: 73-78.

Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J.C. y Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17: 1-21.

Sharma, P., Bhatt, D., Zaidi, M.G.H., Saradhi, P.P., Khanna, P.K. y Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167: 2225-2233.

Shende, S., Ingle, A.P., Gade, A. y Rai, M. (2015). Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World Journal of Microbiology and Biotechnology, 31: 865-873.

Subramanian, K.S., Manikandan, A., Thirunavukkarasu, M. y Rahale, C.S. (2015). Nano-fertilizers for balanced crop nutrition. In: Nanotechnologies in Food and Agriculture (pp. 69-80).

Shyla, K.K. y Natarajan, N. (2014). Customizing zinc oxide, silver and titanium dioxide nanoparticles for enhancing groundnut seed quality. Indian Journal of Science and Technology, 7: 1376-1381.

Stampoulis, D., Sinha, S.K. y White, J.C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & technology, 43: 9473-9479.

Tarafdar, J.C., Raliya, R., Mahawar, H. y Rathore, I. (2014). Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research, 3:257-262.

Yadav, A.S. y Srivastava, D.S. (2015). Application of nano-technology in weed management: A Review. Research & Reviews: Journal of Crop Science and Technology, 4: 21-23.

Zhao, L., Sun, Y., Hernandez, V.J., Servin, A.D. Hong, J., Niu, G., Peralta, V.J., Duarte, G.M. y Gardea, T.J. (2014). Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A life cycle study. Journal of Agricultural and Food Chemistry, 61: 11945-11951.

Published

2016-09-01

How to Cite

Méndez-Argüello, B., Vera-Reyes, I., Mendoza-Mendoza, E., García-Cerda, L. A., Puente-Urbina, B. A., & Lira Saldívar, R. H. (2016). Growth promotion of Capsicum annuum plants by zinc oxide nanoparticles. Nova Scientia, 8(17), 140–156. https://doi.org/10.21640/ns.v8i17.544

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.