Development of a Free Space Optical Classical Communications System with Application in Quantum Communications

Authors

  • Arturo Arvizu Mondragón Departamento de Electrónica y Telecomunicaciones CICESE
  • Josué Aarón López Leyva Departamento de Electrónica y Telecomunicaciones CICESE
  • Juan Carlos Murrieta Lee Departamento Ingeniería Eléctrica y Electrónica Instituto Tecnológico de Sonora
  • Luis Alberto Morán Medina Departamento Ingeniería Eléctrica y Electrónica Instituto Tecnológico de Sonora
  • Ramón Muraoka Espíritu Departamento de Electrónica y Telecomunicaciones CICESE
  • Joel Santos Aguilar Departamento de Electrónica y Telecomunicaciones CICESE

DOI:

https://doi.org/10.21640/ns.v6i12.52

Keywords:

FSO, Weak Coherent States, ATP, QKD

Abstract

Currently the free-space optical links have different applications (some of them are already commercialized and other are in the stage of development) such as: a) horizontal communication links within the same layer of Earth's atmosphere (FSO links, i.e. "free space optics"), among which are permanent or temporary links (used in emergency situations) for short-distance communication between buildings (Fsona, 2014), and high-speed communication in personal wireless optical LANs (Wang, K., et al, 2011), b ) vertical links (LASERCOM systems ) for communication between aircraft and satellites , optical links between satellites in different orbits (Chan , V., 2003), links from satellite to earth stations and vice versa (operating in various layers of the Earth's atmosphere and in deep space (Hemmati , H., 2006 )), c) optical-wireless highspeed connection between printed circuit boards (for distributing clock signals in a satellite and/or to interconnect microprocessors without EMI (Savage, N., 2002)). The development of optical communication links (bidirectional) towards the Earth and from the space has been and is of great interest for various space agencies around the world (JAXA, 2009); the European satellite system SILEX is a practical example of such technology (ESA, 2014); in addition, NASA launched on September 2013 the mission "Lunar Laser Communication Demonstration" which main objective is to demonstrate the reliability of the optical communication between a station in lunar orbit and earth stations within our planet (NASA, 2014). Usually the links abovementioned are "classical" (i.e. they operate with a relatively high number of photons per observation period), however, recently there has been a growing interest in the development of “quantum” communication systems (using low number of photons per observation period) (Hemmati, H., et al, 2012). For these systems different types of “quantum states” may be employed (whose properties have been and are investigated by scientists around the world (Becerra, F.E., et al, 2013)), among others, the “entangled states” (Ma, X., et al, 2012), or “weak coherent states" (WCS). We chose the WCS because its generation is possible with optical sources in the telecom band (Lopez, J., et al, 2013, Lopez, J., et al, 2012). In addition, the use of WCS for communications through free space allows the establishment of links unconditionally secure for quantum key distribution (QKD), satellite links (where the "original" information signal is classical but may arrive as a WCS signal in the receiver front due to the strong attenuation of the atmosphere), among others (currently these topics are of great interest worldwide). It is convenient to mention that we have already implemented some WCS-based Arvizu-Mondragón, A. et al. Revista Electrónica Nova Scientia, Nº 12 Vol. 6 (2), 2014. ISSN 2007 - 0705. pp: 248 – 271 - 252 - subsystems employing optical fiber (Lopez, J., et al, 2013), however, we want to develop WCSfree-space systems for satellite applications (Gutiérrez, C., et al, 2013). Prior to the practical implementation of a FSO- WCS system we consider very convenient the development of a classical FSO link whose subsystems are also used in free-space quantum links. We present the methodology for the design of free-space optical links and a computational tool developed for this purpose. We designed a spatial synchronization scheme (ATP) based on a four-quadrant APD and a magnetic levitation subsystem to monitor a classical optical beacon signal at 532 nm used to establish the communications link and to maintain it operating adequately. It is convenient to mention that although there is a significant amount of papers dedicated to the development of ATP systems with classical optical transmission, to the best of our knowledge has not been reported yet an ATP system based on magnetic levitation for quantum links employing WCS; from our point of view this could be an important contribution of this work. On the other hand, although here we focus on a classic FSO link, the results will be used to the development of links type WCS – FSO for satellite applications

Downloads

Download data is not yet available.

References

Arvizu A., Sánchez J. de D, Mendieta F.J., (2010). Coherent Optical Wireless Link Employing Phase Estimation with Multiple-Beam, Multiple-Aperture, for Increased Tolerance to Turbulence. IEICE Trans. On Comms., VOL.E93-B, NO.1 January, 226-229.

Arvizu Mondragón, Arturo (2012), Curso: Diseño de pequeños satélites. 1er. Congreso Latinoamericano de Ciencia y Tecnología Aeroespacial, 17-21 septiembre, San Luis Potosí, SLP, México. SOMECYTA.

Blandford R. D., Thorne K. S., (2012). Applications of Classical Physics. CalTech.

Busch P., Shilladay C. (2006). Complementarity and uncertainty in Mach–Zehnder interferometry and beyond. Physics Reports, Vol. 435 (1). 1-31.

ESA (European Space Agency), Homepage, 2014, http://www.esa.int/esasearch?q=silex. (8 de abril 2014).

F. E. Becerra, J.Fan, G. Baumgartner, J.Goldhar, J.T.Kosloski, and A. Migdall, Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination, Nature Photonics, 6 january 2013, 1-6.

Fsona, 2014, http://www.fsona.com/technology.php?sec=fso_guide (8 de abril 2014)

González P.Y.F., López L. J. A., Arvizu M. A., Mendieta J.F.J., Santos A. J., García C. E., Conte G.R. (2012). Herramienta para evaluación del presupuesto de potencia óptica en enlaces de comunicaciones clásicas y cuánticas en espacio libre. ROC&C 2012, 11-15 Noviembre. Acapulco, Gro., México.

Guelman, M., Kogan, A., Kazarian, A., Livne, A., Orenstein, M., Michalik, H. (2004). Acquisition and pointing control for inter-satellite laser communications. IEEE Trans. on Aerospace and Electronic Systems, Vol. 40, Issue: 4, 2004, 1239 – 1248.

Gutiérrez Martínez Celso, Viñals Padilla Sergio, Gutiérrez Santillán Saúl, Mendieta Jiménez Francisco, editores, Diseño y especificación inicial microsatélite mexicano SATEX 2, Sociedad Mexicana de Ciencia y Tecnología Aeroespacial (Somecyta), México, 2013, ISBN:978-607-95625-2-6.

Hemmati H. (2006). Deep Space Optical Communications. Wiley-Interscience, 1st-edition USA.

Hemmati H., Dolinar S., Quantum Limits of Space-to-Ground Optical Communications, CLEO Technical Digest 2012, JTh3K.2.pdf

JAXA (Japan Aerospace Exploration Agency), Homepage, 2014, http://www.jaxa.jp/projects/sat/oicets/index_e.html (8 de abril 2014)

Lau C.W., Vilnrotter V. A., Dolinar S., Geremia J. M., Mabuchi H. (2006). Binary Quantum Receiver Concept Demonstration. IPN Progress Report 42-165, May 15, 2006.

López L. J. A., Mendieta J. F. J., García C. E., Arvizu A. M. (2011). Comunicaciones cuánticas con aplicaciones satelitales. 2do Cong. Int. La investigacion en el Posgrado, 20-21 Octubre. Aguascalientes, Aguascalientes, México.

López L. J. A., Arvizu A. M., García C. E., Mendieta J. F. J., Alvarez G. E., Gallion, P. (2012). Detection of phase-diffused weak-coherent-states using an optical Costas loop. Optical Engineering. 51(10).

López Leyva, J. A., A. Arvizu Mondragon, J. R. Zavala Zazueta, M. Velázquez Centeno, A. Farías Salazar, J. Santos Aguilar, F. J. Mendieta Jimenez, R. Muraoka Espiritu y E. Garcia Cardenas (2013), Preliminary results of the first optical quantum communication in Mexico: 2 photons/ bit at 5 Mbps using 62 and 125 Km in a commercial optical network, IEEE Summer Tropicals 2013, 08-10 Julio, Waikoloa, Hawaii, Estados Unidos.

López Leyva, J. A., Santos Aguilar J., Arvizu Mondragón A., Sánchez López, J. D. D. , León Luna, J. L., Ortiz Huerta E. y Ortiz Alcalá F. J. (2013) Pruebas de campo de un subsistema de comunicación óptica cuántica coherente para QKD en espacio libre. pp. 15, Informe técnico CICESE PA: 106184.

Mendieta J. F. J., Arvizu M. A., Muraoka E. R., Pacheco C. E., Murrieta L. J. C., Sánchez G. J. A., Gutiérrez A. J. A. (2011). Optical communications payload for the Mexican Nanosatellite Project SENSAT. ICSOS-2011, 11 - 13 mayo. Santa Monica, Ca., USA.

Mittelstaedt P., Prieur A., Schieder R. (1987). Unsharp Particle-Wave Duality in a Photon Split-Beam Experiment. Foundations of Physics, Vol. 17, No. 9.

NASA Goddard Space Flight Center 2014, http://esc.gsfc.nasa.gov/267/271.html (8 de abril 2014).

Pisani, M. (2004). Four quadrant photo-detector with ultra high common mode rejection ratio and ultra narrow gap. LEOS 2004. Volume: 1, 51 - 52.

Sánchez L. J. D. D., Arvizu M. A., Mendieta J. F. J. , Nieto H. J. I. (2011). Trends of the optical wireless communications. En: Advanced Trends in Wireless Communications. In-Tech. ISBN: 978-953-307-183-1.

Savage, Neil, Linking with light, IEEE Spectrum Magazine, August 2002, 32-36.

Chan, Vincent W. S., Optical Satellite Networks, IEEE Journ of Lightw.Techn., VOL. 21, NO. 11, Nov. 2003, 2811 – 2827.

Shim Y., Milner S. D., Christopher C. D. (2007). A Precise Pointing Technique for Free Space Optical Networking. IEEE MILCOM 2007, 1-7.

Wang, Ke, Nirmalathas, Ampalavanapillai, Lim, Christina and Skafidas, Efstratios, High-Speed Optical Wireless Communication System for Indoor Applications. IEEE Phot.Techn.Lett., VOL. 23, NO. 8, Ap. 15, 2011, 519-521.

Weatherchannel:http://www.weather.com/weather/today/MXBC0003:1, (8 de abril 2014)

Xiao-song Ma, William Naylor, Thomas Herbst, Alexandra Mech, Thomas Scheidl, Daqing Wang, Bernhard Wittmann, Sebastian Kropatschek, Johannes Ko, Elena Anisimova, Vadim Makarov, Thomas Jennewein, Rupert Ursin and Anton Zeilinger, Quantum teleportation using active feed-forward between two Canary Islands, Nature 489, 269 (2012), 17 May 2012, 1-9.

Zhaohui R.,Stephens L.S.(2005). Closed-loop performance of a six degree-of-freedom precision magnetic actuator. IEEE/ASME Transactions on Mechatronics, Volume: 10, 2005, 666-674.

Published

2014-10-08

How to Cite

Arvizu Mondragón, A., López Leyva, J. A., Murrieta Lee, J. C., Morán Medina, L. A., Muraoka Espíritu, R., & Santos Aguilar, J. (2014). Development of a Free Space Optical Classical Communications System with Application in Quantum Communications. Nova Scientia, 6(12), 248–271. https://doi.org/10.21640/ns.v6i12.52

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.