A new proposal for an easy-to-calibrate DNI clear-sky model: a performance analysis and validation in different geographical locations
DOI:
https://doi.org/10.21640/ns.v16i33.3555Keywords:
alternative energies, solar resource assessment, clear-sky model, solar energy, linke turbidityAbstract
Clear sky models can be used as a reference for sizing solar technology applications and for solar irradiance forecasting purposes. Properly defining the parameters of each clear sky model implies knowing the altitude, latitude, longitude, as well as various climatic characteristics of the study site, which makes its implementation difficult. Derived from the above, in this work a new easy-calibration methodology was developed to obtain a functional clear sky model for any day of the year and any geographical location. By proposing calibration coefficients obtained from only a couple of DNI measurements, and without taking into account the geographical characteristics or climatic conditions of the study site, the developed clear sky model was tested in a global context using a period of 11 years (2010-2020) with databases of 71 solarimetric stations, obtaining an average RMSD that ranges between 6.48% (arid climate) to 7.97% (equatorial climate). In addition, the developed model was compared with a variety of clear sky models to determine the percentage of accuracy of these against clear and non-clear sky days, thus demonstrating that the accuracy of the proposed model can be superior in different scenarios.
Downloads
References
Antonanzas-Torres, F., Urraca, R., Polo, J., Perpin ̃ ́an-Lamigueiro, O., Es- cobar, R., 2019. Clear sky solar irradiance models: A review of sev enty models. Renewable and Sustainable Energy Reviews 107, 374 – 387. URL: http://www.sciencedirect.com/science/article/pii/ S1364032119301261, doi:https://doi.org/10.1016/j.rser.2019.02.032.
Barbieri, F., Ra jakaruna, S., Ghosh, A., 2017. Very short-term pho- tovoltaic power forecasting with cloud modeling: A review. Renew- able and Sustainable Energy Reviews 75, 242 – 263. URL: http: //www.sciencedirect.com/science/article/pii/S136403211630733X, doi:https://doi.org/10.1016/j.rser.2016.10.068.
Benjamini, Y., 1988. Opening the box of a boxplot. The American Statistician 4, 257–262. URL: http://www.jstor.org/page/info/about/policies/ terms.jsp, doi:https://doi.org/10.2307/2685133.
Biga, A., Rosa, R., 1979. Contribution to the study of the solar radiation cli- mate of lisbon. Solar Energy 23, 61–67. URL: https://www.sciencedirect. com/science/article/pii/0038092X79900446, doi:https://doi.org/10. 1016/0038-092X(79)90044-6.
Bone, V., Pidgeon, J., Kearney, M., Veeraragavan, A., 2018. Intra- hour direct normal irradiance forecasting through adaptive clear- sky modelling and cloud tracking. Solar Energy 159, 852 – 867. URL: http://www.sciencedirect.com/science/article/pii/ S0038092X17309064, doi:https://doi.org/10.1016/j.solener.2017.10. 037.
Bright, J.M., Sun, X., Gueymard, C.A., Acord, B., Wang, P., Engerer, N.A., 2020. Bright-sun: A globally applicable 1-min irradiance clear- sky detection model. Renewable and Sustainable Energy Reviews 121, 109706. URL: http://www.sciencedirect.com/science/article/pii/ S1364032120300046, doi:https://doi.org/10.1016/j.rser.2020.109706.
Chaˆabane, M., Masmoudi, M., Medhioub, K., 2004. Determina- tion of linke turbidity factor from solar radiation measurement in northern tunisia. Renewable Energy 29, 2065–2076. URL: https: //www.sciencedirect.com/science/article/pii/S0960148104000977, doi:https://doi.org/10.1016/j.renene.2004.03.002.
Chu, Y., Pedro, H.T., Coimbra, C.F., 2013. Hybrid intra-hour dni forecasts with sky image processing enhanced by stochastic learning. Solar Energy 98, 592 – 603. URL: http://www.sciencedirect.com/science/article/pii/ S0038092X13004325, doi:https://doi.org/10.1016/j.solener.2013.10. 020.
Cucumo, M., Kaliakatsos, D., Marinelli, V., 2000. A calculation method for the estimation of the linke turbidity factor. Renewable Energy 19, 249 – 258. URL: http://www.sciencedirect.com/science/article/ pii/S0960148199000397, doi:https://doi.org/10.1016/S0960-1481(99) 00039-7.
Cucumo, M., Marinelli, V., Oliveti, G., 1999. Data bank experimen-
̊ tal data of the linke turbidity factor and estimates of the Angstr ̈om
turbidity coefficient for two italian localities. Renewable Energy 17, 397–410. URL: https://www.sciencedirect.com/science/article/ pii/S096014819800754X, doi:https://doi.org/10.1016/S0960-1481(98) 00754-X.
Daneshyar, M., 1978. Solar radiation statistics for iran. Solar Energy 21, 345–349. URL: https://www.sciencedirect.com/science/article/ pii/0038092X78900130, doi:https://doi.org/10.1016/0038-092X(78) 90013-0.
Denholm, P., Margolis, R.M., 2007. Evaluating the limits of solar pho- tovoltaics (pv) in traditional electric power systems. Energy Policy 35, 2852 – 2861. URL: http://www.sciencedirect.com/science/article/ pii/S0301421506003740, doi:https://doi.org/10.1016/j.enpol.2006. 10.014.
El Mghouchi, Y., El Bouardi, A., Choulli, Z., Ajzoul, T., 2014. New model to estimate and evaluate the solar radiation. International Journal of Sustainable Built Environment 3, 225–234. URL: https:
//www.sciencedirect.com/science/article/pii/S221260901400051X, doi:https://doi.org/10.1016/j.ijsbe.2014.11.001.
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., Bugliaro, L., 2016. The libradtran software package for radiative trans- fer calculations (version 2.0.1). Geoscientific Model Development 9, 1647–1672. URL: https://gmd.copernicus.org/articles/9/1647/2016/, doi:10.5194/gmd-9-1647-2016.
Engerer, N., Mills, F., 2014. Kpv: A clear-sky index for pho- tovoltaics. Solar Energy 105, 679 – 693. URL: http://www. sciencedirect.com/science/article/pii/S0038092X14002151, doi:https://doi.org/10.1016/j.solener.2014.04.019.
Fu, P., Rich, P., 1999. Design and implementation of the solar analyst: an ar- cview extension for modeling solar radiation at landscape scales. Proceedings of the 19th Annual ESRI User Conference .
Gueymard, C.A., 2012. Clear-sky irradiance predictions for solar re- source mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models. Solar Energy 86, 2145 – 2169. URL: http: //www.sciencedirect.com/science/article/pii/S0038092X11004221, doi:https://doi.org/10.1016/j.solener.2011.11.011. progress in Solar Energy 3.
Gueymard, C.A., 2014. A review of validation methodologies and statistical per- formance indicators for modeled solar radiation data: Towards a better bank- ability of solar projects. Renewable and Sustainable Energy Reviews 39, 1024– 1034. URL: https://www.sciencedirect.com/science/article/pii/ S1364032114005693, doi:https://doi.org/10.1016/j.rser.2014.07.117.
Gueymard, C.A., Bright, J.M., Lingfors, D., Habte, A., Sengupta, M., 2019. A posteriori clear-sky identification methods in solar ir- radiance time series: Review and preliminary validation using sky imagers. Renewable and Sustainable Energy Reviews 109, 412– 427. URL: https://www.sciencedirect.com/science/article/pii/ S1364032119302382, doi:https://doi.org/10.1016/j.rser.2019.04.027.
Hansen, K., Breyer, C., Lund, H., 2019. Status and perspec- tives on 100% renewable energy systems. Energy 175, 471 – 480. URL: http://www.sciencedirect.com/science/article/pii/ S0360544219304967, doi:https://doi.org/10.1016/j.energy.2019.03. 092.
Haurwitz, B., 1945. Insolation in relation to cloudiness and cloud density. Jour- nal of Atmospheric Sciences 2, 154–166.
Hottel, H.C., 1976. A simple model for estimating the transmittance of direct solar radiation through clear atmospheres. Solar Energy 18, 129–134. URL: https://www.sciencedirect.com/science/article/ pii/0038092X76900451, doi:https://doi.org/10.1016/0038-092X(76) 90045-1.
Hove, T., Manyumbu, E., 2013. Estimates of the linke turbidity factor over zim- babwe using ground-measured clear-sky global solar radiation and sunshine records based on a modified esra clear-sky model approach. Renewable Energy 52, 190–196. URL: https://www.sciencedirect.com/science/article/ pii/S0960148112006593, doi:https://doi.org/10.1016/j.renene.2012. 09.059.
Ineichen, P., 2006. Comparison of eight clear sky broadband mod- els against 16 independent data banks. Solar Energy 80, 468 – 478. URL: http://www.sciencedirect.com/science/article/pii/ S0038092X05001635, doi:https://doi.org/10.1016/j.solener.2005.04. 018. urban Ventilation.
Ineichen, P., Perez, R., 2002. A new airmass independent for- mulation for the linke turbidity coefficient. Solar Energy 73, 151–157. URL: https://www.sciencedirect.com/science/article/ pii/S0038092X02000452, doi:https://doi.org/10.1016/S0038-092X(02) 00045-2.
Inman, R.H., Edson, J.G., Coimbra, C.F., 2015. Impact of lo- cal broadband turbidity estimation on forecasting of clear sky di- rect normal irradiance. Solar Energy 117, 125–138. URL: https: //www.sciencedirect.com/science/article/pii/S0038092X15002200, doi:https://doi.org/10.1016/j.solener.2015.04.032.
Janjai, S., Sricharoen, K., Pattarapanitchai, S., 2011. Semi-empirical models for the estimation of clear sky solar global and direct normal irradi- ances in the tropics. Applied Energy 88, 4749 – 4755. URL: http: //www.sciencedirect.com/science/article/pii/S0306261911004090, doi:https://doi.org/10.1016/j.apenergy.2011.06.021.
Kasten, F., 1984. Parametrisierung der globalstahlung durch bedeckungsgrad und trubungsfaktor. Annalen der Meteorologie Neue 20, 49–50.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the k ̈oppen-geiger climate classification updated. Meteorologische Zeitschrift 15, 259–263. URL: http://dx.doi.org/10.1127/0941-2948/2006/0130,doi:10.1127/0941-2948/2006/0130.
Laue, E., 1970. The measurement of solar spectral irradiance at different terres- trial elevations. Solar Energy 13, 43–57. URL: https://www.sciencedirect. com/science/article/pii/0038092X7090006X, doi:https://doi.org/10. 1016/0038-092X(70)90006-X.
Lef`evre, M., Oumbe, A., Blanc, P., Espinar, B., Gschwind, B., Qu, Z., Wald, L., Schroedter Homscheidt, M., Hoyer-Klick, C., Arola, A., Benedetti, A., Kaiser, J.W., Morcrette, J.J., 2013. McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmospheric Mea- surement Techniques 6, 2403–2418. URL: https://hal-mines-paristech. archives-ouvertes.fr/hal-00862906, doi:10.5194/amt-6-2403-2013.
Liu, B.Y., Jordan, R.C., 1960. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy 4, 1 – 19. URL: http://www.sciencedirect.com/science/article/ pii/0038092X60900621, doi:https://doi.org/10.1016/0038-092X(60) 90062-1.
Marif, Y., Bechki, D., Zerrouki, M., Belhadj, M., Bouguettaia, H., Ben- moussa, H., 2019. Estimation of atmospheric turbidity over adrar city in algeria. Journal of King Saud University - Science 31, 143 – 149. URL: http://www.sciencedirect.com/science/article/ pii/S1018364717304391, doi:https://doi.org/10.1016/j.jksus.2017. 06.002.
Mavromatakis, F., Franghiadakis, Y., 2007. Direct and indirect deter- mination of the linke turbidity coefficient. Solar Energy 81, 896– 903. URL: https://www.sciencedirect.com/science/article/pii/ S0038092X0600291X, doi:https://doi.org/10.1016/j.solener.2006.11. 010.
Meinel, A.B., Meinel, M.P., 1977. Applied solar energy: an introduction. NASA STI/Recon Technical Report A 77, 33445.
Mueller, R., Dagestad, K., Ineichen, P., Schroedter-Homscheidt, M., Cros, S., Dumortier, D., Kuhlemann, R., Olseth, J., Piernavieja, G., Reise, C., Wald, L., Heinemann, D., 2004. Rethinking satellite-based solar irradiance mod- elling: The solis clear-sky module. Remote Sensing of Environment 91, 160–174. URL: https://www.sciencedirect.com/science/article/pii/ S0034425704000690, doi:https://doi.org/10.1016/j.rse.2004.02.009.
Mueller, R., Matsoukas, C., Gratzki, A., Behr, H., Hollmann, R., 2009. The cm- saf operational scheme for the satellite based retrieval of solar surface irradiance — a lut based eigenvector hybrid approach. Remote Sensing of Environ- ment 113, 1012–1024. URL: https://www.sciencedirect.com/science/ article/pii/S0034425709000224, doi:https://doi.org/10.1016/j.rse. 2009.01.012.
Nouri, B., Wilbert, S., Segura, L., Kuhn, P., Hanrieder, N., Kazantzidis, A., Schmidt, T., Zarzalejo, L., Blanc, P., Pitz-Paal, R., 2019. De- termination of cloud transmittance for all sky imager based so- lar nowcasting. Solar Energy 181, 251 – 263. URL: http: //www.sciencedirect.com/science/article/pii/S0038092X19301306, doi:https://doi.org/10.1016/j.solener.2019.02.004.
Polo, J., Zarzalejo, L., Mart ́ın, L., Navarro, A., Marchante, R., 2009. Estimation of daily linke turbidity factor by using global irradiance measurements at solar noon. Solar Energy 83, 1177– 1185. URL: https://www.sciencedirect.com/science/article/pii/ S0038092X0900019X, doi:https://doi.org/10.1016/j.solener.2009.01. 018.
Reno, M., Hansen, C., Stein, J., 2014. Global horizontal irradiance clear sky models : implementation and analysis doi:10.2172/1039404.
Rigollier, C., Bauer, O., Wald, L., 2000. On the clear sky model of the esra — eu- ropean solar radiation atlas — with respect to the heliosat method. Solar En- ergy 68, 33 – 48. URL: http://www.sciencedirect.com/science/article/ pii/S0038092X99000559, doi:https://doi.org/10.1016/S0038-092X(99) 00055-9.
Rigollier, C., Lef`evre, M., Cros, S., Wald, L., 2002. Heliosat 2: an improved method for the mapping of the solar radiation from meteosat imagery. Pro- ceedings of the 2002 EUMETSAT Meteorological Satellite Conference .
Rowe, S.C., Hischier, I., Palumbo, A.W., Chubukov, B.A., Wallace, M.A., Viger, R., Lewandowski, A., Clough, D.E., Weimer, A.W.,
Nowcasting, predictive control, and feedback control for tem- perature regulation in a novel hybrid solar-electric reactor for con- tinuous solar-thermal chemical processing. Solar Energy 174, 474 – 488. URL: http://www.sciencedirect.com/science/article/pii/ S0038092X18308685, doi:https://doi.org/10.1016/j.solener.2018.09. 005.
Ruiz-Arias, J.A., Gueymard, C.A., 2018. Worldwide inter-comparison of clear- sky solar radiation models: Consensus-based review of direct and global irradiance components simulated at the earth surface. Solar Energy 168, 10 – 29. URL: http://www.sciencedirect.com/science/article/pii/ S0038092X18301257, doi:https://doi.org/10.1016/j.solener.2018.02. 008. advances in Solar Resource Assessment and Forecasting.
Samimi, J., 1994. Estimation of height-dependent solar irradiation and appli- cation to the solar climate of iran. Solar Energy 52, 401–409. URL: https: //www.sciencedirect.com/science/article/pii/0038092X9490117K, doi:https://doi.org/10.1016/0038-092X(94)90117-K.
Scolari, E., Sossan, F., Haure-Touz ́e, M., Paolone, M., 2018. Lo- cal estimation of the global horizontal irradiance using an all- sky camera. Solar Energy 173, 1225 – 1235. URL: http: //www.sciencedirect.com/science/article/pii/S0038092X18308119, doi:https://doi.org/10.1016/j.solener.2018.08.042.
Sharma, M., Pal, R., 1965. Interrelationships between total, direct, and diffuse solar radiation in the tropics. Solar Energy 9, 183–192. URL: https: //www.sciencedirect.com/science/article/pii/0038092X65900459, doi:https://doi.org/10.1016/0038-092X(65)90045-9.
Singh, G., 2013. Solar power generation by pv (photovoltaic) tech- nology: A review. Energy 53, 1 – 13. URL: http://www. sciencedirect.com/science/article/pii/S0360544213001758, doi:https://doi.org/10.1016/j.energy.2013.02.057.
Spencer, J., 1971. Fourier series representation of the position of the sun 2. URL: 625 http://www.mail-archive.com/sundial@uni-koeln.de/msg01050.html.
Sun, X., Bright, J.M., Gueymard, C.A., Acord, B., Wang, P., Engerer, N.A., 2019. Worldwide performance assessment of 75 global clear-sky irradiance models using principal component anal- ysis. Renewable and Sustainable Energy Reviews 111, 550 –570. URL: http://www.sciencedirect.com/science/article/pii/ S1364032119302187, doi:https://doi.org/10.1016/j.rser.2019.04.006.
Sun, X., Bright, J.M., Gueymard, C.A., Bai, X., Acord, B., Wang, P., 2021. Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis. Renewable and Sustainable Energy Reviews 135, 110087. URL: https: //www.sciencedirect.com/science/article/pii/S1364032120303786, doi:https://doi.org/10.1016/j.rser.2020.110087.
Sanchez-Segura, C.D., Pen ̃a-Cruz, M.I., 2021. SSPC Clear sky model code. URL: https://github.com/SanchezCD/SSPC.
Sanchez-Segura, C.D., Valent ́ın-Coronado, L., Pen ̃a-Cruz, M.I., D ́ıaz-Ponce, A., Moctezuma, D., Flores, G., Riveros-Rosas, D., 2021. Solar irradiance components estimation based on a low-cost sky-imager. Solar Energy 220, 269–281. URL: https://www.sciencedirect.com/science/article/pii/ S0038092X2100150X, doi:https://doi.org/10.1016/j.solener.2021.02. 037.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nova Scientia

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Conditions for the freedom of publication: the journal, due to its scientific nature, must not have political or institutional undertones to groups that are foreign to the original objective of the same, or its mission, so that there is no censorship derived from the rigorous ruling process.
Due to this, the contents of the articles will be the responsibility of the authors, and once published, the considerations made to the same will be sent to the authors so that they resolve any possible controversies regarding their work.
The complete or partial reproduction of the work is authorized as long as the source is cited.