Viability of Saccharomyces boulardii in fresh cheese under acidic conditions “in vitro”

Authors

  • Rafael Zamora Vega Universidad Michoacana de San Nicolás Hidalgo. Facultad de Químico Farmacobiología
  • Hector Eduardo Martinez Flores Universidad Michoacana de San Nicolás de Hidalgo.
  • José Luis Montañez Soto Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, del Instituto Politécnico Nacional, Unidad Michoacán
  • José Octavio Rodiles López Universidad Michoacana de San Nicolás Hidalgo. Facultad de Químico Farmacobiología.

DOI:

https://doi.org/10.21640/ns.v7i15.351

Keywords:

probiotic, Saccharomyces boulardii, viability, encapsulation, fresh cheese

Abstract

Introduction: A functional food contains one or more substances that produce human health wellness, such as probiotics, prebiotics, phenolic compounds, unsaturated fatty acids, and others. In functional foods, probiotics must remain viable and active during their transit from food through the intestinal tract, to ensure its potential beneficial effect on the host. In the present study, the viability of the probiotic yeast Saccharomyces boulardii added to fresh cheese in both free form and encapsulated with alginate, inulin and mucilage from nopal (Opuntia ficus-indica) was evaluated under acidic conditions.

Method: The free and encapsulated probiotic yeast food was exposed to pH 2.0 and 6.5 at exposure times of 0, 60, 120 and 180 min, this in order to simulate the acid conditions of the stomach and colon, respectively.

Results: Further loss was observed in the viability of the probiotic in free which was 23.72, 27.03 and 33.02%, respectively, with respect to the initial viability; meanwhile, when the microorganism was added to the cheese in encapsulated form, loss of viability to the same exposure time was 5.74, 14.24 and 18.81% maintaining increased survival compared to the previous. Moreover, a pH of 6.5 the free probiotic in food showed a viability of 2.23, 3.50 and 5.94%, in encapsulated form instead of viability was 0.95, 2.20 and 3.03%, respectively, showing more viability when yeast was encapsulated.

Conclusion: Fresh cheese remains viable survival level of Saccharomyces boulardii, when was added in the encapsulated form as compared to the free state

Downloads

Download data is not yet available.

Author Biography

Hector Eduardo Martinez Flores, Universidad Michoacana de San Nicolás de Hidalgo.

Profesor e Investigador Titular C de Tiempo Completo.

Facultad de Químico Farmacobiología. Universidad Michoacana de San Nicolás de Hidalgo.

Licenciado en Bioquímica por laUniversidad Autónoma de Tamaulipas.

Maestro en Ciencias en Biotecnología por el CINVESTAV-IPN. México. D.F.

Doctor en Ciencias en Biotecnología por el CINVESTAV-IPN. México, DF.

Posdoctorado. Universidade Estadual de Campinas. Campinas, SP, Brasil. Periodo 1997 a 2000.

Sabático en Washington State University. Pullman, WA, USA. Periodo Agosto de 2013 a Julio de 2014.

Miembro del Sistema Nacional de Investigadores. Nivel 2.

41 publicaciones JCR y 2 indizadas en CONACYT.

References

Ariza Ortega, Teresita de Jesús. (2010). Relación entre la textura de geles de alginato de sodio con gelana o kappa-carragenina/algarrobo y viabilidad en la encapsulación de bacterias lácticas. Tesis de Maestría en Ciencias en Ingeniería Bioquímica. Tecnológico de Estudios Superiores de Ecatepec, Ecatepec, Estado de México, México.

Chandramouli V., Kailasapathy K., Peiris P. y Jones M. (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Meth (56): 27–35.

Córdova A. K., Tello F., Bierhalz A. C. K., Garnica Romo M. G. Martínez F. H. E., Grosso C.R.F. (2015). Protein adsorption onto alginate-pectin microparticles and films produced by ionic gelation. J Food Engin (154): 17-24.

Dembczynski R. y Jankowski T. 2000. Growth of lactic acid bacteria in alginate/ starch capsules. Food biotechnol (17): 291-294.

Ding W. K., Shah P. (2007). Acid, bile, and heat tolerance of free and microencapsulated bacteria. J Food Sci 72(9): 446-450.

El-Salam M. H. A. y El-Shibiny S. (2015). Preparation and properties of milk proteins-based encapsulated probiotics: a review. Dairy Sci Technol (95): 393–412

Hansen L. T., Allan-Wojtas P. M., Jin Y. L. y Paulson A. T. (2002). Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol (19): 35–45.

Heller K. J., Bockelmann W., Schrezenmeir J. y de Vrese M. (2003). Handbook of fermented functional foods; Cap. 8: Cheese and its potential as a probiotic food (Ed.: Farnworth, E. R.). CRC Press, Estados Unidos, pp. 203-225.

Kailasapathy K. y Rybka S. (1997). L. acidophilus and Bifidobacterium spp.—Their therapeutic potential and survival in yoghurt. Aust J Dairy Technol (52): 28–35.

Kim S. J., Cho S. Y., Kim S. H., Song O. J., Shin I. S., Cha D. S. y Park H. J. (2008). Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT – Food Sci Technol (41): 493-500.

Lahtinen S. J., Ouwehand A. C., Salminen S. J., Forssell P. y Myllärinen P. (2007). Effect of starch- and lipid-based encapsulation on the culturability of two Bifidobacterium longum strains. Lett Appl Microbiol (44): 500-505.

Mandal S., Puniya A. K. y Singh K. (2005). Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int Dairy J 16: 1190-1195.

Masuda T., Yamanari R. y Itoh T. (2005). The Trial for Production of Fresh Cheese incorporated probiotic Lactobacillus acidophilus Group Lactic Acid Bacteria. Milchwissenschaft 60 (2): 167-171.

Parvez S., Malik K. A., Ah K. S. y Kim H. Y. (2006). Probiotics and their fermented food products are beneficial for health. J Appl Microbiol (100): 1171–1185.

Rokka S. y Rantamaki P. (2010). Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol (231): 1-12.

Ross R. P., Fitzgerald G., Collins K. y Stanton C. (2002). Cheese delivering biocultures probiotic cheese. Aust J Dairy Technol 57 (2): 71-78.

Trindade C. S. F. y Grosso C. R. F. (2000). The effect of the immobilization of Lactobacillus acidophilus and Bifidobacterium lactis in alginate on their tolerance to gastrointestinal secretions. Milchwissenschaft (55): 496–499.

Yañez J., Salazar J., Chaires L., Jiménez J., Márquez M. y Ramos E. (2002). Aplicaciones biotecnológicas de la microencapsulación. Avance y Perspectiva (21): 313-318.

Salazar-López E. I., Jiménez M., Salazar R. y Azuara E. (2015) Incorporation of microcapsules in pineapple intercellular tissue using osmotic dehydration and microencapsulation method. Food Bioprocess Technol (8): 1699–1706.

Zamora-Vega R., Montañez-Soto J. L., Martínez-Flores H. E., lores-Magallón R., Muñoz-Ruíz C. V., Venegas-González J. y Ariza-Ortega T. De J. (2012). Effect of incorporating prebiotics in coating materials for the microencapsulation of Sacharomyces boulardii. Int J Food Sci Nutr 63 (8): 930-935.

Published

2015-11-27

How to Cite

Vega, R. Z., Martinez Flores, H. E., Montañez Soto, J. L., & Rodiles López, J. O. (2015). Viability of Saccharomyces boulardii in fresh cheese under acidic conditions “in vitro”. Nova Scientia, 7(15), 68–80. https://doi.org/10.21640/ns.v7i15.351

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.