Recovery of the response function of a flexible membrane to a volume oscillation using double digital fringe projection technique and frequency filtering

Authors

DOI:

https://doi.org/10.21640/ns.v15i31.3408

Keywords:

fringe projection, frequency filter, optical phase, flexible membrane, moiré pattern

Abstract

This study presents a method to recover the response function of a flexible latex membrane undergoing a dynamic event by volume oscillation using Double Digital Fringe Projection to measure the profile of the surface in a sequence of frames. By applying a frequency filter to the interference pattern, a moiré pattern was obtained. Optical phase retrieval from individual frames was performed using the Isotropic Quadrature Transform Algorithm. This fringe projection technique enables full-field measurements, including edges where other techniques could not perform due to shadows generated by the tilt angle. The procedure was devised as a non-contact system to retrieve the deformation function of a flexible surface, enhancing a valuable aspect of the methodology. The results demonstrate successful recovery of the membrane response function, highlighting the relevance of the method for accurate deformation measurements using a straightforward system. These outcomes provide significant value for the development of precise measurement techniques for flexible structures in engineering applications, such as soft robotics, biomedical devices, and material science.

Downloads

Download data is not yet available.

Author Biographies

Daniel Arturo Olivares Vera, National Technological Institute of Mexico, Technological Institute of León / La Salle Bajío University

Division of Graduate Studies and Research. León, Guanajuato, Mexico

David Asael Gutiérrez Hernández, National Technological Institute of Mexico, Technological Institute of León

Division of Graduate Studies and Research. León, Guanajuato, Mexico

Francisco Javier Casillas Rodríguez, University of Guadalajara

De Los Lagos University Center, Department of Exact Sciences and Technology. Lagos de Moreno, Jalisco, Mexico

José de Jesús Ibarra Sánchez, Universidad Iberoamericana León

Department of Engineering. León, Guanajuato, Mexico

References

Botello, S., Marroquin, J. L., & Rivera M. (1998) Multigrid algorithms for processing fringe- pattern images. Applied Optics, 37 (32): 7587-7595.

Cerca, M., Barrientos, B., García, J., & Hernández, C., (2007) Obtención del relieve digital mediante proyección de luz estructurada en modelos analógicos de extensión. Boletín de la Sociedad Geológica Mexicana, 59: 101-113.

Creath, K. & Wyant, J. (1992) Optical Shop Testing, John Wiley, New York, pp. 501-599.

González, A., Meneses, J., & León, J. (2012). Proyección de franjas en metrología óptica facial. INGE CUC, 8(1), 191-206.

Gorthi, S. & Rastogi, P. (2010) Fringe Projection Techniques: Whither we are? Optics and Lasers in Engineering. 48(2): 133-140.

Gräser, C., Kienle, D. & Sander, O. (2023). Truncated nonsmooth Newton multigrid for phase-field brittle-fracture problems, with analysis. Computational Mechanics. 1-31. 10.1007/s00466-023-02330-x.

Gutierrez-Hernandez, D., Atondo-Rubio, G., Parra, J., Santiago-Montero, R., Romero, V., Del Valle, J. & Ibarra, I. (2015) Double-digital fringe projection for optical phase retrieval of a single frame. Journal of optoelectronics and advanced materials. 17(9–10), 1248.

Gutierrez-Hernandez, D., Parra, J., Atondo-Rubio, G., Tellez-Quiñones, A. & Del Valle, J. (2016) Fast phase retrieval by temporal phase shifting and double-digital fringe projection. Journal of optoelectronics and advanced materials. 18(9–10), 750.

Hernández, J., De la Rosa, J., Rodríguez, G., Flores, J., Tsonchev, R., Garcia-Torales, G., Alaniz-Lumbreras, D., & González, E., (2018). The 2D Continuous Wavelet Transform: Applications in Fringe Pattern Processing for Optical Measurement Techniques. Wavelet Theory and Its Applications. InTech. DOI: 10.5772/intechopen.74813.

Kreis, T. (2005). Fourier Transform Evaluation. Handbook of Holographic Interferometry: Optical and Digital Methods, John Wiley & Sons Ltd., Bremen, Pp. 256-258.

Larkin, K., Bone, D., & Oldfield, M. (2001) Natural demodulation of two- dimensional fringe patterns. I. General background of the spiral phase quadrature transform. JOSA A, 8: 1862-1870.

Liu, Z., Bu, S., Zhang, C. & Tang, X. (2010) Filter Fourier Coefficients of Shape Projections for 3D Shape Retrieval. International journal on information. 13: 1351-1360.

Malacara, D. (1990) Phase Shifting Interferometry, Revista Mexicana de Física 36(1): 6-22.

Martínez, A., Rayas, J., Vera, R., Flores-Moreno, J., & Aguayo, D. (2005) Técnicas ópticas para el contorneo de superficies tridimensionales. Revista Mexicana de Física, 51(4): 431-436.

Múnera, N. (2013) Interferometría Holográfica Digital en Tiempo Real: Aplicación de la Cuantificación de Deformaciones Mecánicas. M.C. Thesis. Universidad Nacional de Colombia, Facultad de Ciencias. Medellín, Colombia.

Pérez, Z., & Meneses, G., (2006) Aproximación Espacio-Temporal para la medida absoluta de la forma 3D de un objeto por proyección de franjas. Revista de la Sociedad Colombiana de Física. 38(2): 641-644.

Quan, C., Tay, C., Huang, Y., (2004) 3-D deformation measurement using fringe projection and digital image correlation. Optik, 115(4): 164-168.

Quiroga, J., Crespo, D., & Gomez-Pedrero, J., (2015) “XtremeFringe ®: state-of- art software for automatic processing of fringe patterns”, Proc. of SPIE, 6616, 66163Y-1- 10.

Quiroga, J., Servin, M., Marroquín, J., & Gomez-Pedrero, J. (2003) isotropic n dimensional quadrature transform and its applications in fringe pattern processing, Proc. SPIE 5144, Optical Measurement Systems for Industrial Inspection III.

Rivera, M., Hernandez-Lopez, F., & Gonzalez, A. (2015) Phase unwrapping by accumulation of residual maps. Optics and Lasers in Engineering, 64: 51-58.

Sciammarella, C. A., Lamberti, L. & Boccaccio, A. (2008a) General model for moiré contouring, part 1: theory. Optical Engineering, 47(3): 033605

Sciammarella, C. A., Lamberti, L., Boccaccio, A., Cosola, E. & Posa, D. (2008b) General model for moiré contouring, part 2: applications, Optical Engineering 47(3):033606

Servín, M. & Rodríguez-Vera, R. (1993) Two-dimensional phase locked loop demodulation of interferograms, Journal of modern optics. 40, 2087-2094.

Servin, M., Quiroga, J. & Marroquín, J. (2003) A general n-dimensional quadrature transform and its applications to interferogram demodulation. JOSA A, 20: 925-934.

Sitni, R. (2009) Four-dimensional measurement by a single-frame structured light method, Applied Optics 48, 3344.

Soriano-Garcia, M., Sevilla-Escoboza, R. & Mora-Gonzalez, M. (2019) Optomechatronics design for mobile fringe patterns with applications on profilometry, IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 1-6.

Takeda, M., Ina, H., & Kobayashi, S. (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of the Optical Society of America, 72: 156-160.

Uribe-López U., Gutiérrez-Hernández D., Casillas- Rodríguez F., Mora-González M., Muñoz-Maciel J., (2019a) Improvement of fringe quality for phase extraction in double digital fringe projection, Optical Engineering. 58(9): 092605.

Uribe-López, U., et al., Gutierrez-Hernandez, D., Casillas-Rodriguez, F., Tellez-Quiñones, A., Parra-Michel, J., Del Valle-Hernandez, J. & Escobar, M., (2019b) Measurement of transient dynamics on a flexible membrane by double digital fringe projection. Journal of optoelectronics and advanced materials. 21(1–2).

Uribe-López, U., Hernández-Montes, M., and Mendoza-Santoyo, F. (2016) Fully automated digital holographic interferometer for 360 deg contour and displacement measurements, Optical Engineering. 55(12), 121719

Valin, J., Goncalves, E., Vinícius-Soares, P., Milito, G., Palacios-Fernández, F., Roque, G., Ricardo-Pérez, J., & Valin Fernández, M., (2017) Desarrollo del método de Moiré de proyección de franjas para la evaluación de deformaciones en premolares superiores, 20: 22-30.

Van der Jeught, S. & Dirckx, J., (2016). Real-time structured light profilometry: A review. Optics and Lasers in Engineering. Vol 87. (18-31). DOI: 10.1016/j.optlaseng.2016.01.011.

Verlag, F. (2002) “Indications for Optical Shape Measurements,” vol. 58, pp. 55–58.

Wu, J., Liu, K., Sui, X., & Cao, L. (2021). High-speed computer-generated holography using an autoencoder-based deep neural network. Optics Letters, 46(12), 2908-2911.

Zhang S. & Yau S.-T. (2008). “Three-dimensional shape measurement using a structured light system with dual cameras,” Opt. Eng. 47, 013604–013604.

Zhang, Y., Qu, X., Li, Y. & Zhang, F. (2021). “A Separation Method of Superimposed Gratings in Double-Projector Fringe Projection Profilometry Using a Color Camera”. Appl. Sci., 11, 890. https://doi.org/10.3390/app11030890

Zhang, Z. (2012) Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques, Optics and Lasers in Engineering, 50(8): 1097-1106

Downloads

Published

2023-11-30

How to Cite

Uribe López, U., Olivares Vera, D. A., Gutiérrez Hernández, D. A., Casillas Rodríguez, F. J., & Ibarra Sánchez, J. de J. (2023). Recovery of the response function of a flexible membrane to a volume oscillation using double digital fringe projection technique and frequency filtering. Nova Scientia, 15(31), 1–13. https://doi.org/10.21640/ns.v15i31.3408

Issue

Section

Natural Sciences and Engineering

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.