Antioxidant activity of kafirins and procyanidins of sorghum against the superoxide anion radical

Authors

DOI:

https://doi.org/10.21640/ns.v15i31.3283

Keywords:

sorghum, kafirins, procyanidins, antioxidant, agriculture

Abstract

The objective of this research was to isolate, characterize, and determine the effects of kafirins and procyanidins of brown sorghum, against different concentrations of superoxide anion radical (O2•−) chemically generated in an aprotic polar medium. Likewise (-)-epicatechin, which represents the most abundant monomer of sorghum procyanidins was included as a reference system. Studies in this context are scarce and are considered relevant due to the abundance of such compounds and their potential application as drugs or functional ingredients in foods. By the effect of the hydrophobicity of the kafirins, these were better inhibitors of O2•− in the aprotic polar medium (DMSO) in which they were analyzed, compared to procyanidins and (-)-epicatechin that have a hydrophilic character. This result is important since procyanidins are considered one of the bioactive compounds with the highest antioxidant ability against a considerable number of free radicals.

Downloads

Download data is not yet available.

Author Biographies

Arely León López, Centro de Investigación en Alimentación y Desarrollo, A. C.

Coordination of Technology of Foods of Plant Origin. Hermosillo, Sonora, Mexico

Ana María Mendoza Wilson, Food and Development Research Center, A.C.

Coordination of Technology of Foods of Plant Origin. Hermosillo, Sonora, Mexico

René Renato Balandrán Quintana , Food and Development Research Center, A.C.

Coordination of Technology of Foods of Plant Origin. Hermosillo, Sonora, Mexico

José Ángel Huerta Ocampo , Food and Development Research Center, A.C.

Food Science Coordination. Hermosillo, Sonora, Mexico

References

Agrawal, H., Joshi, R., and Gupta, M. (2017). Isolation and characterisation of enzymatic hydrolysed peptides with antioxidant activities from green tender sorghum. LWT Food Science and Technoogy. 84, 608–616. https://doi.org/10.1016/j.lwt.2017.06.036

Arouna, N., Morena G., and Pucci, L. (2020). The Impact of Germination on Sorghum Nutraceutical Properties. Foods. 9(9), 1218–1230. https://doi.org/10.3390/foods9091218

Awika, J. M., Lloyd, W., and Waniska, R. D. (2004). Properties of 3-Deoxyanthocyanins from Sorghum. Journal of Agricultural and Food Chemistry. 52 (14), 4388-4394. https://doi.org/10.1021/jf049653f

Badigannavar, A., Govindappa, G., Ramachandran, V., and Ganapathi, T. R. (2016). Genotypic variation for seed protein and mineral content among post-rainy season-grown sorghum genotypes. The Crop Journal. 4(1), 61-67. https://doi.org/10.1016/j.cj.2015.07.002

Badigannavar, A., Teme, N., Costa de Olivera, A., Li, G., Vaskmann, M., Viana, E. V., Ganapathi, T.R., and Salsu, F. (2018). Physiological, genetic and molecular basis of drought resilience in sorghum [Sorghum bicolor (L.) Moench]. Indian Journal of Plant Physiology. 23(4), 670-688. https://doi.org/10.1007/s40502-018-0416-2

Balandrán-Quintana, R. R., Mendoza-Wilson, A. M., Ramos-Clamont, M. G., and Huerta-Ocampo J. A. (2019). Plant-Based Proteins. Proteins: Sustainable Source, Processing and Applications. Academic Press. 97-130. https://doi.org/10.1016/B978-0-12-816695-6.00004-0

Barros, F., Dykes L., Awika, J.M., and Rooney, LW. (2013). Accelerated solvent extraction of phenolic compounds from sorghum brans. Journal of Cereal Science. 58(2), 305-312. https://doi.org/10.1016/j.jcs.2013.05.011

Cabrera-Ramírez, A. H., Luzardo-Ocampo, I., Ramírez-Jimenez, A.K., Morales-Sanchez, E., Campos-Vega, R., and Gaytán-Martínez, M. (2020). Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion. Food Research International. 134, 109234. https://doi.org/10.1016/j.fooddres.2020.109234

Carmelo-Luna, F. J., Mendoza-Wilson, A. M., and Balandrán-Quintana, R. R. (2020). Antiradical and chelating ability of (+)-catechin, procyanidin B1, and a procyanidin-rich fraction isolated from brown sorghum bran. Nova Scientia. 24(12), 1–21. https://doi.org/10.21640/ns.v12i24.2006

Castro-Jácome, T. P., Alcántara-Quintana, L. E., and Tovar-Pérez, E. G. (2020). Optimization of sorghum kafirin extraction conditions and identification of potential bioactive peptides. BioResearch. 9(1), 198-208. https://doi.org/10.1089/biores.2020.0013

Chaquilla-Quilca, G., Azamar-Barrio, J.A., Balandrán-Quintana, R. R., Ramos-Clamont, M. G., A.M., Mendoza-Wilson, A. M., Mercado-Ruiz, J. N., Madera-Santana, T. J., López-Franco, Y. L., and Luna-Valdez, J. G. (2016). Synthesis of tubular nanostructures from wheat bran albumins during proteolysis with V8 protease in the presence of calcium ions. Food Chemistry. 200, 16-23. https://doi.org/10.1016/j.foodchem.2016.01.005

Chiquito-Almanza, E., Cobielles-Castrejón, G., Montes-García, N., Pecina-Quintero, V., and Anaya-López, J. L. (2011). Kafirinas, proteínas clave para conferir digestibilidad y calidad proteica al grano de sorgo. Revista Mexicana de Ciencias Agrícolas. 2(2), 235-248.

Choi, S., Kim, JM., Lee, YG., and Kim, C., (2019). Antioxidant activity and contents of total phenolic compounds and anthocyanins according to grain colour in several varieties of Sorghum bicolor (L.) Moench. Cereal Research Communications. 47(2), 228-238. https://doi.org/10.1556/0806.47.2019.14

Costa Tiago, J. , Rodrigues Barros, P., Arce C., Duarte Santos, J., da Silva-Neto, J., Gustavo E., Dantas, A. P. , Tostes, R. , and Jiménez-Altayó, F. (2021). The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radical Biology and Medicine. 162, 615–635. https://doi.org/10.1016/j.freeradbiomed.2020.11.021

Curti, M. I., Belorio M., Palavecino, P. M., Camiña, J. M., Ribotta, P. D., and Gómez, M. (2022). Effect of sorghum flour properties on gluten-free sponge cake. Journal of Food Science and Technology. 59(4), 1407-1418. https://doi.org/10.1007/s13197-021-05150-0

Dia, V. P., Pangloli, P., Jones, L., McClure, A., and Patel, A. (2016). Phytochemical concentrations and biological activities of Sorghum bicolor alcoholic extracts. Food & Function. 7(8), 3410-3420. https://doi.org/doi:10.1039/C6FO00757K

Dianda, N., Binte, R. T., and Bonilla, J. (2019). Effect of solvent polarity on the secondary structure, surface and mechanical properties of biodegradable kafirin films. Journal of Cereal Science. 90, 102856, https://doi.org/10.1016/j.jcs.2019.102856

Duodu, K. G., Taylor, J. R. N., Belton, P. S., and Hamaker, B. R. (2003). Factors affecting sorghum protein digestibility. Journal of Cereal Science. 38, 117-131. https://doi.org/10.1016/So733-5210(03)00016-X

Dubois-Deruy E., Peugnet, V., Turkieh, A., and Pinet, F. (2020). Oxidative stress in cardiovascular diseases. Antioxidants. 9(9), 864. https://doi.org/10.3390/antiox9090864

Esfandi, R., Walters, M. E., and Tsopmo, A. (2019). Antioxidant properties and potencial mechanism of hydrolyzed proteins and peptides from cereals. Heliyon. 5(4), e01538. https://doi.org/10.1016/j.heliyon.2019.e01538

Espinosa-Ramírez, J. and Serna-Saldívar, S. O. (2016). Functionality and characterization of kafirin-rich protein extracts from different whole and decorticated sorghum genotypes. Journal of Cereal Science. 70, 57-65. https://doi.org/10.1016/j.jcs.2016.05.023

Famuwagun, A. A., Alashi, A. M., Gbadamosi, S. O., Taiwo, K. A., Oyedele, D., Adebooye, O. C., and Aluko, R. E. (2021) Effect of Protease Type and Peptide Size on the In Vitro Antioxidant, Antihypertensive and Anti-Diabetic Activities of Eggplant Leaf Protein Hydrolysates. Foods. 10(5),1112. https://doi.org/10.3390/foods10051112

Gu, L., Kelm, M., Hammerston, J., and Beecher, G. R. (2002). Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC−MS fluorescent detection method. Journal of Agricultural and Food Chemistry, 50(17), 4852-4860. https://doi.org/10.1021/jf020214v

Hatano, T. Rei, E., Midori, H., Akitane, M., Yuzaburo, F., Taeko, Y., Takashi, Y., and Takuo, O. (1989) effects of the interaction of tannins with co-existing substances. vi. effects of tannins and related polyphenols on superoxide anion radical, and on 1, 1-diphenyl-2-picrylhydrazyl radical. Chemical & Pharmaceutical Bulletin. 37(8), 2016-2021. https://doi.org/10.1248/CPB.37.2016

Hellwig, M. (2019). The chemistry of protein oxidation in food. Food chemistry. 58(47), 16747- 16751. https://doi.org/10.1002/anie.201814144

Huang, D. (2018). Dietary antioxidants and health promotion, Multidisciplinary Digital Publishing Institute. Antioxidants. 7(1), 9. https://doi.org/10.3390/antiox7010009

Idowu, A., Famuwagun, A., Fagbemi, T. N., and Rotimi A. (2021). Antioxidant and enzyme-inhibitory properties of sesame seed protein fractions and their isolate and hydrolyzate. International Journal of Food Properties. 24(1), 780-795. https://doi.org/10.1080/10942912.2021.1919704

Ifeanyi, O. E. (2018). A review on free radicals and antioxidants. International Journal of Current Research in Medical Sciences. 4(2), 123-133. https://doi.org/10.22192/ijcrms.2018.04.02.019

Ioerger, B. P., Bean, S. R., and Tilley, M. (2020). An improved method for extraction of sorghum polymeric protein complexes. Journal of Cereal Science. 91, 102876. https://doi.org/10.1016/j.jcs.2019.102876

Kamath, V. G., Chandrashekar, A., and Rajini, P. S. (2004). Antiradical properties of sorghum (Sorghum bicolor L. Moench) flour extracts. Journal of Cereal Science. 40(3), 283-288. https://doi.org/10.1016/j.jcs.2004.08.004

Kładna, A., Berczyński, P., Kruk, I., Michalska, T., and Aboul-Enein, H. Y. (2012). Scavenging of hydroxyl radical by catecholamines. The Jorunal of Biological and Chemical Luminscence. 27(6), 473-477. https://doi.org/10.1002/bio.1377

Kumari, P. K., Umakanth, A.V., Narsaiah, B. T., and Uma, A. (2021). Exploring anthocyanins, antioxidant capacity and α-glucosidase inhibition in bran and flour extracts of selected sorghum genotypes. Food Bioscience. 41, 100979. https://doi.org/10.1016/j.fbio.2021.100979

León-López, A., Mendoza-Wilson, A. M., and Balandrán-Quintana, R., R. (2022). Propiedades nutricionales, funcionales y bioactivas de alimentos a base de sorgo: Avances y oportunidades para su aprovechamiento integral. TECNOCIENCIA Chihuahua. 16(2), 40-63. https://doi.org/10.54167/tecnociencia.v16i2.912

Li, A., Jia, S., Yobi, A., Ge, Z., Sato, S. J., Zhang, C., Angelovici, R., Clemente, T. E., and Holding, D. R. (2018). Editing of an alpha-kafirin gene family increases, digestibility, and protein quality in sorghum. Plant Physiology. 177(4), 1425-1438. https://doi.org/10.1104/pp.18.00200

Mendoza-Wilson, A. M., Carmelo-Luna, F. J., Astiazarán-García, H., Pacheco-Moreno, B. I., Anduro-Corona, I., and Rascón-Durán, M. L. (2016). DFT study of the physicochemical properties of A- and B-type procyanidin oligomers. Journal of Theoretical and Computational Chemistry. 15(8), 1650069. https://doi.org/10.1142/S0219633616500693

Mendoza-Wilson, A.M., Balandrán-Quintana, R. R., and Cabellos, J. L. (2020). Thermochemical behavior of sorghum procyanidin trimers with C4–C8 and C4–C6 interflavan bonds in the reaction with superoxide anion radical and H2O2-forming NADH-oxidase flavoenzyme. Computational and Theoretical Chemistry. 1186, 112912. https://doi.org/10.1016/j.comptc.2020.112912

Mishra, B., Priyadarsini, I., Bhide, M.K., Kadam, R. M., and Mohan, H. (2004). Reactions of superoxide radicals with curcumin: probable mechanisms by optical spectroscopy and EPR. Free Radical Research. 38(4), 355–362. https://doi.org/10.1080/10715760310001660259

Moraes Aguilar, E., Marineli da Silva, R., Lenquiste Alves, S., Dteel, J. C., de Menezes Beserra, C., Queiroz Vieira, A.V., and Júnior Maróstica, M. R. (2015). Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food Chemistry. 118, 116-123. https://doi.org/10.1016/j.foodchem.2015.02.023

Neha, K., Haider, R., Pathak, A., Yar, S., and Yar, M. (2019). Medicinal prospects of antioxidants: A review. European Journal of Medicinal Chemistry. 178, 687-704. https://doi.org/10.1016/j.ejmech.2019.06.010

Ofosu, F. K., Mensah, D. F., Daliri, E. B., and Oh, D. H. (2021). Exploring molecular insights of cereal peptidic antioxidants in metabolic syndrome prevention. Antioxidants. 10(4), 518. https://doi.org/10.3390/antiox10040518

Oladele, A. K., Duodu, K. G., and Emmambux, N. M. (2019). Pasting, flow, thermal and molecular properties of maize starch modified with crude phenolic extracts from grape pomace and sorghum bran under alkaline conditions. Food Chemistry. 297, 124879. https://doi.org/10.1016/j.geoderma.2019.06.038

Ortíz Cruz, R. A., Cárdenas López, J. L., González Aguilar, G. A., Astiazarán García, H., Gorinstein, S., Canett Romero R., and Robles Sánchez, M. (2015). Influence of sorghum kafirin on serum lipid profile and antioxidant activity in hyperlipidemic rats (In Vitro and In Vivo studies). BioMed Research International. 2015, 164725. https://doi.org/10.1155/2015/164725

Osibanjo A., Ibidapo, P.O., and Elemo, G.N. (2021). Rheological characteristics and proximate principles of sorghum flour and sorghum bran for possible use in baking. European Journal of Applied Sciences. 9(3), 358-367. https://doi.org/10.14738/aivp.93.10279

Ozkan, G., Franco, P., De Marco, I., Xiao, J., and Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks, and applications. Food Chemistry. 272, 494-506. https://doi.org/10.1016/j.foodchem.2018.07.205

Palavecino, P. M., Penci, M. C., and Ribotta, P. D. (2019). Effect of planetary ball milling on physicochemical and morphological properties of sorghum flour. Journal of Food Engineering. 262, 22-28. https://doi.org/10.1016/j.foodeng.2019.05.007

Palavecino, P. M., Curti, M. I., Bustos, M. C., Penci, M. C., and Ribotta, P. D. (2020). Sorghum pasta and noodles: Technological and nutritional aspects. Plant Foods for Human Nutrition. 75(3), 326-336. https://doi.org/10.1007/s11130-20-00829-9

Pezzali, J. G., Raj, A. S., Siliveru, K., and Aldrich, G. (2020). Characterization of white and red sorghum flour and their potential use for production of extrudate crisps. PLoS One. 15(6), e0234940. https://doi.org/10.1371/journal.pone.0234940

Pinto, M., Benefeito, S., Fernandes, C., and Borges, F. (2020). Antioxidant therapy, oxidative stress, and blood-brain barrier: The road of dietary antioxidants. In Colin R. Martin, and Victor R. Preed (Eds.). Oxidative Stress and Dietary Antioxidants in Neurological Diseases (pp. 125-141). Academic Press. https://doi.org/10.1016/B978-0-12-817780-8.00009-8

Pontieri, P., Troisi, J., Scott, R. B., and Michael, T. (2019). Comparison of extraction methods for isolating kafirin protein from food grade sorghum flour. Australian Journal of Crop Science. 13(8), 1297-1304. https://doi.org/10.21475/ajcs.19.13.08.p1695

Rebellato, A. P., Orlando, E. A., Toretti, T. V., Greiner, R., and Pallone Lima, J. A. (2020). Effect of phytase treatment of sorghum flour, an alternative for gluten free foods and bioaccessibility of essential minerals. Journal of Food Science and Technology. 57(9), 3474-3481. https://doi.org/10.1007/s13197-020-04382-w

Rendra, E., Riabov, V., Mossel, D. M., Sevastyanova, T., Harmsen, M. C., and Kzhyshkowska, J. (2019). Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 224(2), 242-253. https://doi.org/10.1016/j.imbio.2018.11.010

Rumler, R., Bender, D., Speranza, S., Frauenlob, J., Gamper, L., Hoek, J., Jäger, H., and Schönlechner, R. (2021). Chemical and physical characterization of sorghum milling fractions and sorghum whole meal flours obtained via stone or roller milling. Foods. 10(4), 870. https://doi.org/10.3390/foods10040870

Saint-Cricq de Gaulejac, G., Provost, C., and Vivas, N. (1999). Comparative study of polyphenol scavenging activities assessed by different methods. Journal of Agricultural and Food Chemistry. 47(2), 425-431. https://doi.org/10.1021/jf980700b

Salazar-López, N. J., González-Aguilar, G., Rouzand-Sandez, O., and Robles-Sanchez, M. (2018). Technologies applied to sorghum (Sorghum bicolor L. Moench): Changes in phenolic compounds and antioxidant capacity. Food Science and Technology. 38, 369-382. https://doi.org/10.1590/fst.16017

Shah, U., Dwivedi, D., Hackett, M., Al-Salami, H., Utikar, R. P., Blanchard, C., Gani, A., Rowles, M. R., and Johnson, S. K. (2021). Physicochemical characterization of kafirins extracted from sorghum grain and dried distillers grain with solubles related to their biomaterial functionality. Scientific Reports. 11(1), 15204. https://doi.org/10.1038/s41598-021-94718-z

Sullivan, A. C., Pangloli, P., and Dia, V. P. (2018). Impact of ultrasonication on the physicochemical properties of sorghum kafirin and in vitro pepsin-pancreatin digestibility of sorghum gluten-like flour. Food Chemistry. 1(240),1121-1130. https://doi.org/10.1016/j.foodchem.2017.08.046

Tadesse, A. S., Bultosa, G., and Abera, S. (2019). Chemical and sensory quality of sorghum-based extruded product supplemented with defatted soy meal flour. Cogent Food & Agriculture. 5(1), 1653617. https://doi.org/10.1080/23311932.2019.1653617

Tang, X., He, Z., Dai, Y., Xiong, Y. L., Xie, M., and Chen, J. (2010). Peptide fractionation and free radical scavenging activity of zein hydrolysate. Journal of Agricultural and Food Chemistry. 58(1), 587–593. https://doi.org/10.1021/jf9028656

Tasie, M. M., and Gebreyes, G. B. (2020). Characterization of nutritional, antinutritional, and mineral contents of thirty-five sorghum varieties grown in Ethiopia. International Journal of Food Science. 11(2020), 8243617. https://doi.org/10.1155/2020/8243617

Taubert, D., Breitenbach, T., Lazar, A., Censarek, P., Harlfinger, S., Berkels, R., Klaus, W., and Roesen, R. (2003). Reaction rate constants of superoxide scavenging by plant antioxidants. Free Radical Biology & Medicine. 35(12), 1599–1607. https://doi.org/10.1016/j.freeradbiomed.2003.09.005

Taylor, J., and Taylor, J. R. N. (2018). Making kafirin, the sorghum prolamin, into a viable alternative protein source. Journal of the American Oil Chemists' Society. 95(8), 969-990. https://doi.org/10.1002/aocs.12016

Unate-Fraga, S., García-López, J., Flores-Naveda, A., Ruiz-Torres, N., Ramirez-Barron, S., Hernandez-Juarez, A., Lozano-del Río, A., and Tafolla-Arellano, J. (2022). Grain yield, nutritional, polyphenols and antioxidant capacity in accessions of sorghum (Sorghum bicolor L. Moench). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 50(1), 12637-12637. https://doi.org/10.15835/nbha50112637

L,i H., Zhang, W., Fu, Y., Li, P., Liu, W. and Chen, J. (2020). A novel method for simultaneously screening superoxide anion scavengers and xanthine oxidase inhibitors using hydroethidine as a fluorescent probe coupled with High-Performance Liquid Chromatography-Mass Spectrometry. Analytical Methods. 12, 255-263. https://doi.org/10.1039/C9AY02059D

Wu, G., Johnson, S. K., Bornman, J. F., Bennett, S. J., and Zhongxiang, F. (2017). Changes in whole grain polyphenols and antioxidant activity of six sorghum genotypes under different irrigation treatments. Food Chemistry. 1(214), 199-207. https://doi.org/10.1016/j.foodchem.2016.07.089

Xiao, J., Li, Y., Perez Gonzalez, A., Xia, Q., and Huang, Q. (2015). Structure, morphology, and assembly behavior of kafirin. Journal of Agricultural and Food Chemistry, 63(1), 216-224. https://doi.org/10.1021/jf504674z

Xu, B. J. and Chang, S. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2), S159-S166. https://doi.org/10.1111/j.1750-3841.2006.00260.x

Xu, S., Shen, Y., Chen, G., Bean, S., and Li, Y. (2019). Antioxidant characteristics and identification of peptides from sorghum kafirin hydrolysates. Journal of Food Science. 84(8), 2065-2076. https://doi.org/10.1111/1750-3841.14704

Xu, S., Shen, Y, and Li, Y. (2019). Antioxidant activities of sorghum kafirin alcalase hydrolysates and membrane/gel filtrated fractions. Antioxidants. 8(5), 131. https://doi.org/10.3390/antiox8050131

Xu, J., Wang, W., and Zhao, Y. (2021). Phenolic compounds in whole grain sorghum and their health benefits. Foods. 10(8), 1921. https://doi.org/10.3390/foods10081921

Yanagida, A., Murao, H., Ohnishi-Kameyama, M., Yamakawa, Y., Shoji, A., Tagashira, M., Kanda, T., Shindo, H., and Shibusawa, Y. (2007). Retention behavior of oligomeric proanthocyanidins in hydrophilic interaction chromatography. Journal of Chromatography A. 1143 (1-2), 153–161. https://doi.org/10.1016/j.chroma.2007.01.004

Yang, N., Guan, Q., Chen, F. H., Xia, Q. X., Yin, X. X., Zhou, H. H., and Mao, X. Y. (2020). Antioxidants targeting mitochondrial oxidative stress: Promising neuroprotectants for epilepsy. Oxidative Medicine and Cellular Longevity. 2020, 1-14. https://doi.org/10.1155/2020/6687185

Zamora, J. D. (2007). Antioxidantes: Micronutrientes en lucha por la salud. Revista Chilena de Nutrición. 34(1), 17-26. https://doi.org/10.4067/S0717-75182007000100002

Downloads

Published

2023-11-30

How to Cite

León López, A., Mendoza Wilson, A. M., Balandrán Quintana , R. R. ., & Huerta Ocampo , J. Ángel . (2023). Antioxidant activity of kafirins and procyanidins of sorghum against the superoxide anion radical . Nova Scientia, 15(31), 1–12. https://doi.org/10.21640/ns.v15i31.3283

Issue

Section

Natural Sciences and Engineering

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.