sWSN3: A simulation tool for reliability calculation in WSN
PDF

Keywords

redes de sensores inalámbricos
confiabilidad de redes de telecomunicaciones
sistemas ciber-físicos
industria
software
parámetros
energía
confiabilidad
optimización
recursos wireless sensor networks
telecommunication network reliability
cyber-physical systems
industry
software
parameters
energy
reliability
optimization
resources

How to Cite

Cortés Aguilar, T. A., Cantoral Ceballos , J. A., & Tovar Arriaga, A. (2023). sWSN3: A simulation tool for reliability calculation in WSN. Nova Scientia, 15(30), 1–15. https://doi.org/10.21640/ns.v15i30.3159

Abstract

Knowledge about the reliability of a wireless sensor network is important in industry. Indeed, in holonic manufacturing, it is convenient to ensure that decisions are made with reliable data. However, experimental evaluation in a real environment is a task that consumes time and financial resources, it also depends on several factors such as the technical characteristics of the transceiver and the location of the nodes. Thus, the use of simulation and calculation software in Industry 4.0 can potentially reduce costs and implementation time significantly, nonetheless some simulators deal with power consumption and network reliability with theoretical models that have limitations for commercial devices. This paper presents the sWSN3 tool that, through an intuitive graphical interface allows placing sensor nodes on the virtual environment of a plant layout and calculates the reliability of a wireless sensor network using parameters such as signal to noise ratio, received packet rate, and battery life time. Results show that sWSN3 can accurately estimate the reliability of a virtual WSN.

https://doi.org/10.21640/ns.v15i30.3159
PDF

References

Aalsalem, M. Y., Khan, W. Z., Gharibi, W., Khan, M. K., & Arshad, Q. (2018). Wireless Sensor Networks in oil and gas industry: Recent advances, taxonomy, requirements, and open challenges. Journal of Network and Computer Applications, 113, 87–97. https://doi.org/10.1016/j.jnca.2018.04.004

Adly, I., Ragai, H. F., Elhennawy, A. E., & Shehata, K. A. (2010). Adaptive packet sizing for OTAP of PSoC based interface board in WSN. 2010 International Conference on Microelectronics, 148–151. https://doi.org/10.1109/ICM.2010.5696101

Araúzo, J. A., Martínez, R. del O., Laviós, J. J., & Martín, J. J. de B. (2015). Programación y Control de Sistemas de Fabricación Flexibles: Un Enfoque Holónico. Revista Iberoamericana de Automática e Informática industrial, 12(1), 58–68. https://doi.org/10.1016/j.riai.2014.11.005

Bakni, M., Moreno Chacón, L. M., Cardinale, Y., Terrasson, G., & Curea, O. (2019). WSN Simulators Evaluation: An Approach Focusing on Energy Awareness. International Journal of Wireless & Mobile Networks, 11(6), 1–20. https://doi.org/10.5121/ijwmn.2019.11601

Banner. (2019). Tower Lights. https://www.bannerengineering.com/us/en.html

Belman, C. E., Jiménez-García, J. A., & Hernández-González, S. (2020). Análisis exhaustivo de los principios de diseño en el contexto de Industria 4.0. Revista Iberoamericana de Automática e Informática industrial, 17(4), 432–447. https://doi.org/10.4995/riai.2020.12579

Casilari, E., Cano-García, J. M., & Campos-Garrido, G. (2010). Modeling of Current Consumption in 802.15.4/ZigBee Sensor Motes. Sensors, 10(6), 5443–5468. https://doi.org/10.3390/s100605443

Chaari, L., & Kamoun, L. (2011). Performance Analysis of IEEE 802.15.4/Zigbee Standard Under Real Time Constraints. International Journal of Computer Networks & Communications, 3(5), 235–251. https://doi.org/10.5121/ijcnc.2011.3517

Duan, Y., Li, W., Fu, X., Luo, Y., & Yang, L. (2018). A methodology for reliability of WSN based on software defined network in adaptive industrial environment. IEEE/CAA Journal of Automatica Sinica, 5(1), 74–82. https://doi.org/10.1109/JAS.2017.7510751

EpiSensor. (2018). ISO 50001 and the advantages of the EpiSensor Platform. Application Note EPI-059-02, https://episensor.com/documentation/

Friesel, D., Kaiser, L. & Spinczyk. O. (2021). Automatic energy model generation with msp430 EnergyTrace. In Proc. of CPS-IoTBench. 26–31. https://doi.org/10.1145/3458473.3458822

Gautam, G., & Sen, B. (2015). Design and Simulation of Wireless Sensor Network in NS2. https://doi.org/10.5120/19910-2018

Goyal, M., Prakash, S., Xie, W., Bashir, Y., Hosseini, H., & Durresi, A. (2010). Evaluating the Impact of Signal to Noise Ratio on IEEE 802.15.4 PHY-Level Packet Loss Rate. 2010. In 13th International Conference on Network-Based Information Systems, 279–284. https://doi.org/10.1109/NBiS.2010.97

Leyva, I., Rivero-Angeles, M. E., Carreto-Arellano, C., & Pla, V. (2016). Análisis de Desempeño de un Protocolo para Redes Inalámbricas de Sensores Basado en TDMA con Capacidades de Radio Cognoscitivo. Revista Iberoamericana de Automática e Informática Industrial RIAI, 13(1), 92–102. https://doi.org/10.1016/j.riai.2015.11.003

Mendoza, E., Fuentes, P., Benítez, I., Reina, D., & Núñez, J. (2020). Red de sensores inalámbricos multisalto para sistemas domóticos de bajo costo y área extendida. Revista Iberoamericana de Automática e Informática industrial, 17(4), 412–423. https://doi.org/10.4995/riai.2020.12301

Mora, J. M., Larios, D. F., Barbancho, J., Molina, F. J., Sevillano, J. L., & León, C. (2013). mTOSSIM: A simulator that estimates battery lifetime in wireless sensor networks. Simulation Modelling Practice and Theory, 31, 39–51. https://doi.org/10.1016/j.simpat.2012.10.009

Nielsen, I., Dang, Q.-V., Bocewicz, G., & Banaszak, Z. (2017). A methodology for implementation of mobile robot in adaptive manufacturing environments. Journal of Intelligent Manufacturing, 28(5), 1171–1188. https://doi.org/10.1007/s10845-015-1072-2

Patlite. (2020). Signal Tower. https://www.patlite.com/

Radmand, P., Talevski, A., Petersen, S., & Carlsen, S. (2010). Comparison of industrial WSN standards. In 4th IEEE International Conference on Digital Ecosystems and Technologies, 632–637. https://doi.org/10.1109/DEST.2010.5610582

Shelar, D. S., Gharpure, D. C., & Shaligram, A. D. (2017). Performance Analysis of ZigBee based Wireless Sensor Network for Grain Storage Monitoring. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 6(6), 9. https://doi.org/10.15662/IJAREEIE.2017.0606044

Subaashini, K., Dhivya, G., & Pitchiah, R. (2012). Zigbee RF signal strength for indoor location sensing—Experiments and results. 2012. In 14th International Conference on Advanced Communication Technology (ICACT), 12–17.

Tahir, M., Javaid, N., Iqbal, A., Khan, Z. A., & Alrajeh, N. (2013). On Adaptive Energy-Efficient Transmission in WSNs. International Journal of Distributed Sensor Networks, 9(5), 923714. https://doi.org/10.1155/2013/923714

Wattics. (2016). ISO 50001 Energy Management Software Standard, Certification & Requirements. https://www.wattics.com/dashboard/

Werma. (2017). SmartMONITOR. https://www.werma.com/es/products/system/smartmonitor.php

Xu, J., Liu, W., Lang, F., Zhang, Y., & Wang, C. (2010). Distance Measurement Model Based on RSSI in WSN. Wireless Sensor Network, 2(8), 606–611. https://doi.org/10.4236/wsn.2010.28072

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Nova Scientia