Ruminal fermentation profile, yield milk and chemic and microbiologic quality in dairy cattle feed with nitrogen enriches apple pomace




apple residue, milk quality, lactation , microbial contamination , fermentation , production, protein, feeding, animals, solid-state fermentation


Solid-state fermented apple pomace (AP-SSF) enriched with non-nitrogen protein has been studied as an alternative ingredient for feeding dairy cattle. The present study aimed to evaluate the effect of the inclusion of AP-SSF in the feeding of dairy cows in early lactation on the yield and quality of milk, microbial contamination, and ruminal fermentation parameters, as well as the concentration of ammonia and the number of protozoa. Twenty Holstein cows were used, 20 of 660 kg on average, with 2-4 lactations and an average of 89 days in milk. Two groups were formed with ten cows each, randomly distributed to form a 2 x 2 Latin square with standard periods. Experiment diets were formulated with traditional ingredients, and one of them was added AP-SSF. Rations were gradually incorporated, giving ten days for adaptation and another 20 days for sampling. In lactose and production variables, no difference was statistically significant (P> 0.05) in milk fat and protein differences (P < 0.05) in the first component for the control treatment and the second toward treatment, as AP-SSF succeeded in increasing the percentage of milk fat. For Staphylococcus sp.Streptococcus sp. and Total coliform differences (P < 0.05) in favor of the treatment were achieved AP-SSF and decreased the CFU / mL for Salmonella sp. while there was no difference (P > 0.05). Volatile fatty acids showed statistical difference (P < 0.05) for Acetic, Propionic, and Butyric acids. AP-SSF treatment for the rest of the parameters ruminal pH, ammonia, and protozoa did not show any significant difference (P > 0.05) between treatments. Concluded that it is possible to incorporate AP-SSF as a protein ingredient in diets of dairy cows in early lactation because some variables improved and showed no adverse effects in any of the variables evaluated.


Download data is not yet available.

Author Biographies

Alberto Muro Reyes, Autonomous University of Zacatecas

Academic Unit of Veterinary Medicine and Zootechnics

Francisco Javier Gutiérrez Piña, Autonomous University of Zacatecas

Academic Unit of Veterinary Medicine and Zootechnics

Carlos Rodríguez Muela, Autonomous University of Chihuahua

Faculty of Zootechnics and Ecology, Chihuahua

Carlos Abel Amaya Guerra, Autonomous University of Nuevo León

Food Department of the Faculty of Biological Sciences

Héctor Gutiérrez Bañuelos, Autonomous University of Zacatecas

Academic Unit of Veterinary Medicine and Zootechnics

Luis Humberto Díaz García, Autonomous University of Zacatecas

Academic Unit of Veterinary Medicine and Zootechnics

Laura Alicia Polín Raygoza, Autonomous University of Zacatecas

Food Department of the Faculty of Biological Sciences

Alejandro Espinoza Canales, Autonomous University of Zacatecas

Food Department of the Faculty of Biological Sciences


Alais C. (2003). En Ciencia de la Leche: Principios de Técnica Lechera (pág. 191). Barcelona: Reverté, SA.

Bauman D, Mather I, Wall R, Lock A. (2006). Major advances associated with the biosynthesis of milk. Journal of Dairy Science. 2006;89(4):1235-43.

Becerra D. (2006). Aprovechamiento de subproductos de manzana mediante la producción de proteína microbiana con fermentación en estado sólido para la alimentación animal: Universidad Autónoma de Chihuahua.

Beigh Y.A., Ganai A.M., & Ahmad (2015). Utilization of apple pomase as livestock feed: A Review, The Indian Journal Small Ruminants, 21(2):165-179.

Broderick G, Kang J. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of dairy science, 63(1):64-75.

Cárdenas-Manríquez, M., Young, R., Semple, K., Li, C., Coy, D., Underwood, E., Siddique, T., Guigard, S., Bressler, D., Gupta, R., & Foght, J. (2020). Microbially-mediated de-watering and consolidation (“Biodensification”) of oil sands mature fine tailings, amended with agri-business by-products. Nova Scientia, 12(24). doi:

Chew B. (1993). Role of carotenoids in the immune response. Journal of Dairy Science, 76(9):2804-11.

Chilliard Y. (1993). Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: a review. Journal of Dairy Science, 76(12):3897-931.

Cressman S, Grieve D, Macleod G, Wheeler E, Young L. (1980). Influence of dietary protein concentration on milk production by dairy cattle in early lactation. Journal of Dairy Science, 63(11):1839-47.

Dehority BA. (2003). Rumen microbiology: Nottingham University Press Nottingham.

Erskine R. (1993). Nutrition and mastitis. The Veterinary clinics of North America Food animal practice, 9(3):551-61.

Forster RJ, Grieve D, Buchanan-Smith J, Macleod G. (1983). Effect of dietary protein degradability on cows in early lactation. Journal of Dairy Science, 66(8):1653-62.

Galyean M. (2006). Laboratory Procedures in Animal Nutrition Research. Texas Tech Univ., Lubbock.

Gallegos Acevedo Ma. (2007) Conteo de células somáticas en leche, actividad antioxidante del plasma y componentes celulares sanguíneos de vacas holstein en producción alimentadas con manzarina en la dieta: Universidad Autónoma de Chihuahua.

Goff H, Griffiths M. (2006). Major advances in fresh milk and milk products: fluid milk products and frozen desserts. Journal of Dairy Science; 89(4):1163-73.

Graminha E, Gonçalves A, Pirota R, Balsalobre M, Da Silva R, Gomes E. (2008). Enzyme production by solid-state fermentation: Application to animal nutrition. Animal Feed Science and Technology. 20;144(1):1-22.

Gutiérrez Piña F. (2007). Efecto de la manzarina sobre los componentes fisicoquímicos y producción de leche. Chihuahua, Chihuahua, México.: Universidad Autónoma de Chihuahua.

Gutiérrez Tlahque, J., Santiago Sáenz, Y., Hernández Fuentes, A., Pinedo Espinoza, J., López Buenabad, G., & López Palestina, C. (2019). Influencia de los métodos de cocción sobre la actividad antioxidante y compuestos bioactivos de tomate (Solanum lycopersicum L.). Nova Scientia, 11(22), 53-68. doi:

Hernández C, Rodríguez-Ramírez H, Rodríguez Muela C, Flores Mariñelarena A, Arzola Álvarez C. (2007). Temperature, dry matter, pH, yeast count and protein behavior on the solid state fermentation of Apple pomace. Joint Annual Metting San Antonio, Tx USA Pag. 285.

Hettinga DH. (1989). Why alter milk composition? Journal of Dairy Science; 72(10):2790-800.

Hoover W, Miller T. (1991). Rumen digestive physiology and microbial ecology. The Veterinary clinics of North America Food animal practice, 7(2):311-25.

IDF. (1991). Standard 100: Milk and Milk Products. Enumeration of Microorganisms. Brussels Belgium.

Jenkins T, McGuire M. (2006). Major advances in nutrition: impact on milk composition. Journal of Dairy Science, 89(4):1302-10.

Kalscheur K, Vandersall J, Erdman R, Kohn R, Russek-Cohen E. (1999). Effects of dietary crude protein concentration and degradability on milk production responses of early, mid, and late lactation dairy cows. Journal of Dairy Science, 82(3):545-54.

Koskinen M, Wellenberg G, Sampimon O, Holopainen J, Rothkamp A, Salmikivi L, et al. (20109. Field comparison of real-time polymerase chain reaction and bacterial culture for identification of bovine mastitis bacteria. Journal of dairy science. 2010;93(12):5707-15.

Lascano, Heinrichs. (2008). The Use of Cytometry to Asses Rumen Bacteria in Dairy Heifers Limit Fed Different Forage to Concentrate Rations with Saccharomyces cerevisiae. . Journal of Animal Science (E-Suppl2), 86(91).

Lauzon K, Zhao X, Bouetard A, Delbecchi L, Paquette B, Lacasse P. (2005). Antioxidants to prevent bovine neutrophil-induced mammary epithelial cell damage. Journal of dairy science, 88(12):4295-303.

Makkar H, McSwneey C. (2005). Methods in Gut Microbiology Ecology for rumiants. Springer.

McDonald P. (2002). Animal nutrition: Pearson education.

McGuffey R, Green H, Basson R. (1990). Lactation response of dairy cows receiving bovine somatotropin and fed rations varying in crude protein and undegradable intake protein. Journal of dairy science, 73(9):2437-43.

Miles A, Misra S. (1938). Bacterial Count. J hygin,(London), 38:732.

O’Mara F, Murphy J, Rath M. (1998). Effect of amount of dietary supplement and source of protein on milk production, ruminal fermentation, and nutrient flows in dairy cows. Journal of dairy science, 81(9):2430-9.

Park C, Jacobson N, Swenson M, Reece W. (2006). Glândula mamária e lactação. Dukes: fisiologia dos animais domésticos,11:645-59.

Ramirez-Lozano RG. (2003). Nutrición de rumiantes: sistemas extensivos. Editorial Trillas, 221-30.

Reyes J, Elias A, Mora D, Capdevilla J, Ponce P. (1993). Utilización de pienso a base de saccharina en vacas en pastoreo. Revista cubana de Ciencia Agrícola.

Romero Toledo, R., Ruiz Santoyo, V., Anaya Esparza, L., Pérez Larios, A., & Martínez Rosales, M. (2019). Study of arsenic (V) removal of water by using agglomerated alumina. Nova Scientia, 11(23), 01 - 25. doi:

Robinson T, Nigam P. (2003). Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochemical Engineering Journal; 13(2):197-203.

Rodríguez Muela C. Producción y evaluación de alimentos fermentados a partir de bagazo y desecho de manzana y su efecto sobre el desarrollo ruminal y parámetros sanguíneos: Tesis Dr. Cs. Facultad de Zootecnia y Ecología Universidad Autónoma de Chihuahua. Chihuahua. México; 2009.

SAS. (2006). SAS for mixed models: SAS institute.

Smith K, Conrad H, Amiet B, Schoenberger P, Todhunter D. (1985). Effect of vitamin E and selenium dietary supplementation on mastitis in first lactation dairy cows. J Dairy Sci, 68(Suppl 1):190.

Smith KL, Harrison J, Hancock D, Todhunter D, Conrad H. (1984)- Effect of Vitamin E and Selenium Supplementation on Incidence of Clinical Mastitis and Duration of Clinical Symptoms 1, 2. Journal of Dairy Science, 67(6):1293-300.

Smulski S, Gehrke M, Libera K. et al. (2020). Effects of various mastitis treatments on the reproductive performance of cows. BMC Vet Res 16(99):1-10.

Stockdale C. (2006). Influence of milking frequency on the productivity of dairy cows. Animal Production Science, 46(7):965-74.

Tizard I. (1995). Inmunología Veterinaria. 2da. Edición Edit Interamericana México.

Urrutia NL, Harvantine KJ. (2017). Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. 147(5):763-769.

Valdéz R, Alvarez F, Ferreiro H, Guerra F, Lopez J, Priego A, et al. (1997). Rumen fuction in cattle given sugar cane. Trop. Anim Prod, 2:260-72.

Villegas de Gante A. (2004). Tecnología Quesera-México. México: Trillas;

Weinberg ZG. (2000). Biotechnology in developing countries: opportunities in solid state fermentation applied in the agricultural industry. Inter. J. of Biotech, 2(4): 364-373.

Zimmerman C, Rakes A, Jaquette R, Hopkins B, Croom W. Effects of protein level and forage source on milk production and composition in early lactation dairy cows. Journal of dairy science. 1991;74(3):980-90.




How to Cite

Muro Reyes, A., Gutiérrez Piña, F. J., Rodríguez Muela, C., Amaya Guerra, C. A., Gutiérrez Bañuelos, H., Díaz García, L. H. ., … Espinoza Canales, A. (2023). Ruminal fermentation profile, yield milk and chemic and microbiologic quality in dairy cattle feed with nitrogen enriches apple pomace. Nova Scientia, 15(30), 1–9.



Natural Sciences and Engineering


Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.