Regularized Phase Tracking using fixed-point for fringe patterns demodulation

Authors

DOI:

https://doi.org/10.21640/ns.v14i29.3138

Keywords:

fringe analysys, phase demodulation, regularized phase tracking, cost functional, optimization, fixed point, BFGS, numerical performance, inverse problems, patterns, minimization

Abstract

The objective of fringe pattern analysis is to extract modulated experimental information in an image. Among the techniques used in the demodulation process is the Regularized Phase Tracking. In this technique, a functional is proposed which is usually solved with classical minimization methods. This paper presents a minimization method for this technique using the fixed-point technique, which presents a normalized error like classical minimization methods, but with a notable reduction in processing time.

Downloads

Download data is not yet available.

Author Biographies

Eduardo Pérez Dawn, Autonomous University of Yucatan

Faculty of Mathematics. Merida, Yucatan, Mexico

Ricardo Legarda Sáenz, Autonomous University of Yucatan

CLIR Lab, Faculty of Mathematics. Merida, Yucatan, Mexico

Arturo Espinosa Romero, Autonomous University of Yucatan

CLIR Lab, Faculty of Mathematics. Merida, Yucatan, Mexico

References

Jupyter Team. (2022, 10 de febrero). Jupyter Project Documentation.

https://docs.jupyter.org/en/latest/

Bertero, M., & Boccacci, P. (1998). Introduction to Inverse Problems in Imaging. Bristol: Institute of Physics Publishing. https://doi.org/10.1201/9780367806941

Brito-Loeza, C., Legarda-Saenz, R., & Martin-Gonzalez, A. (2020). A fast algorithm for a total variation based phase demodulation model. Numerical Methods for Partial Differential Equations, 36(3), 617-636. https://doi.org/10.1002/num.22444

Golub, G. H., & Van Loan, C. F. (1996). Matrix Computations (Third ed.). Johns Hopkins University Press. https://doi.org/10.5555/248979

Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing (Third ed.). Pearson Prentice Hall. https://doi.org/10.5555/1076432

Kreis, T. (2004). Handbook of Holographic Interferometry: Optical and Digital Methods. John Wiley & Sons. https://doi.org/10.1002/3527604154

Marroquin, J. L., & Figueroa, J. (1997). Robust quadrature filters. J. Opt. Soc. Am. A, 14(4), 779-791. https://doi.org/10.1364/JOSAA.14.000779

Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer. https://doi.org/10.1007/978-0-387-40065-5

Perlin, M., & Bustamante, M. D. (2016). A robust quantitative comparison criterion of two signals based on the Sobolev norm of theri difference. J. Eng. Math., 101, 115-124. https://doi.org/10.1007/s10665-016-9849-7

Saad, Y. (2003). Iterative methods for sparse linear systems (Second ed.). SIAM. https://doi.org/10.5555/829576

Sauer, T. (2012). Numerical Analysis. Pearson.

Servin, M., Marroquin, J. L., & Cuevas, F. J. (1997). Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. Appl. Opt., 36, 4540-4548. https://doi.org/10.1364/AO.36.004540

Servin, M., Marroquin, J. L., & Cuevas, F. J. (2001). Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms. J. Opt. Soc. Am. A , 18(3), 689-695. https://doi.org/10.1364/JOSAA.18.000689

Servin, M., Quiroga, J. A., & Marroquin, J. L. (2003). General n-dimensional quadrature transform and its application to interferogram demodulation. J. Opt. Soc. Am. A, 20(5), 925-934. https://doi.org/10.1364/JOSAA.20.000925

Servin, M., Quiroga, J. A., & Padilla, J. M. (2014). Fringe Pattern Analysis for Optical Metrology. John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527681075

Takeda, M., Ina, H., & Kobayashi, S. (1982). Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Optical Society of America, 72(1), 156-160. https://doi.org/10.1364/JOSA.72.000156

Tikhonov, A. N., & Arsenin, V. I. (1977). Solutions of Ill Posed Problems. Washington D. C.: V. H. Winston & Sons. https://doi.org/10.2307/2006360

Zuo, C., Qian, J., Feng, S., Yin, W., Li, Y., Fan, P., . . . Chen, Q. (23 de 02 de 2022). Deep learning in optical metrology: a review. Light: Science & Applications, 11(39). https://doi.org/10.1038/s41377-022-00714-x

Published

2022-11-11

How to Cite

Pérez Dawn, E., Legarda Sáenz, R., & Espinosa Romero, A. . (2022). Regularized Phase Tracking using fixed-point for fringe patterns demodulation. Nova Scientia, 14(29). https://doi.org/10.21640/ns.v14i29.3138

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.