Abstract
The objective of fringe pattern analysis is to extract modulated experimental information in an image. Among the techniques used in the demodulation process is the Regularized Phase Tracking. In this technique, a functional is proposed which is usually solved with classical minimization methods. This paper presents a minimization method for this technique using the fixed-point technique, which presents a normalized error like classical minimization methods, but with a notable reduction in processing time.
References
Jupyter Team. (2022, 10 de febrero). Jupyter Project Documentation.
https://docs.jupyter.org/en/latest/
Bertero, M., & Boccacci, P. (1998). Introduction to Inverse Problems in Imaging. Bristol: Institute of Physics Publishing. https://doi.org/10.1201/9780367806941
Brito-Loeza, C., Legarda-Saenz, R., & Martin-Gonzalez, A. (2020). A fast algorithm for a total variation based phase demodulation model. Numerical Methods for Partial Differential Equations, 36(3), 617-636. https://doi.org/10.1002/num.22444
Golub, G. H., & Van Loan, C. F. (1996). Matrix Computations (Third ed.). Johns Hopkins University Press. https://doi.org/10.5555/248979
Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing (Third ed.). Pearson Prentice Hall. https://doi.org/10.5555/1076432
Kreis, T. (2004). Handbook of Holographic Interferometry: Optical and Digital Methods. John Wiley & Sons. https://doi.org/10.1002/3527604154
Marroquin, J. L., & Figueroa, J. (1997). Robust quadrature filters. J. Opt. Soc. Am. A, 14(4), 779-791. https://doi.org/10.1364/JOSAA.14.000779
Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer. https://doi.org/10.1007/978-0-387-40065-5
Perlin, M., & Bustamante, M. D. (2016). A robust quantitative comparison criterion of two signals based on the Sobolev norm of theri difference. J. Eng. Math., 101, 115-124. https://doi.org/10.1007/s10665-016-9849-7
Saad, Y. (2003). Iterative methods for sparse linear systems (Second ed.). SIAM. https://doi.org/10.5555/829576
Sauer, T. (2012). Numerical Analysis. Pearson.
Servin, M., Marroquin, J. L., & Cuevas, F. J. (1997). Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. Appl. Opt., 36, 4540-4548. https://doi.org/10.1364/AO.36.004540
Servin, M., Marroquin, J. L., & Cuevas, F. J. (2001). Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms. J. Opt. Soc. Am. A , 18(3), 689-695. https://doi.org/10.1364/JOSAA.18.000689
Servin, M., Quiroga, J. A., & Marroquin, J. L. (2003). General n-dimensional quadrature transform and its application to interferogram demodulation. J. Opt. Soc. Am. A, 20(5), 925-934. https://doi.org/10.1364/JOSAA.20.000925
Servin, M., Quiroga, J. A., & Padilla, J. M. (2014). Fringe Pattern Analysis for Optical Metrology. John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527681075
Takeda, M., Ina, H., & Kobayashi, S. (1982). Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Optical Society of America, 72(1), 156-160. https://doi.org/10.1364/JOSA.72.000156
Tikhonov, A. N., & Arsenin, V. I. (1977). Solutions of Ill Posed Problems. Washington D. C.: V. H. Winston & Sons. https://doi.org/10.2307/2006360
Zuo, C., Qian, J., Feng, S., Yin, W., Li, Y., Fan, P., . . . Chen, Q. (23 de 02 de 2022). Deep learning in optical metrology: a review. Light: Science & Applications, 11(39). https://doi.org/10.1038/s41377-022-00714-x

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Nova Scientia