Abstract
We describe some properties of the evolution of the COVID-19 pandemic that reveal its behavior as a complex system. The propagation mechanism shows a Poincaré section with fractal dimension 1 < D < 2. The present period of apparent recovery shows a relaxation with non-extensive statistical properties.
References
Rosa W, Weberszpil J. Dual conformable derivative: Definition, simple properties and perspectives for applications. Chaos, Solitons & Fractals. 2018 Dec;117:137-41.
Weberszpil J, Godinho C, Liang Y. Dual conformable derivative: Variational approach and nonlinear equations. EPL (Europhysics Letters). 2020 Jan;128:31001. 10.1209/0295-5075/128/31001
Tsallis C, Tirnakli U. Predicting COVID-19 peaks around the world. medRxiv:10.3389/fphy.2020.00217 [preprint].[Posted 2020 May 04]:[6 p.]. https://doi.org/10.1101/2020.04.24.20078154https://www.medrxiv.org/content/early/2020/05/04/2020.04.24.20078154.full.pdf.
Weberszpil J, Lazo M J, Helayël-Neto J. On a connection between a class of q-deformed algebras and the Hausdorff derivative in a medium with fractal metric.Physica A: Statistical Mechanics and its Applications. 2015 Oct;436:399-404.https://doi.org/10.1016/j.physa.2015.05.063
Kermack W O, McKendrick A G. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London Series A. 1927;115:700-721. https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118
Korsch H J, Jodl H J. Chaos. A program collection for the PC. 2nd rev. ed. Berlin-Heidelberg: Springer; 1998. 312 p. 10.1007/978-3-662-03866-6.
Binney J J, Dowrick N J, Fisher A J, Newman M E J. The Theory of Critical Phenomena. Oxford: Clarendon Press; 1992.
Bak P, Tang C, Wiesenfeld K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev Letters. 1987;59(4-27):381.
Zipf G K. Human Behavior and the principle of the least effort. An Introduction to Human Ecology. Cambridge, Mass.: Addison-Wesley; 1949. 573 p.
West G. Scale. The universal laws of growth, innovation, sustainability, and the pace of life in organisms, cities, economies, and companies. Nueva York: Penguin Press; 2017. 496 p. 10.1177/2399808317735012.
Mandelbrot B. The Fractal Geometry of Nature. W. H. Freeman and Company; 1983.
Das S K. A scaling investigation of pattern in the spread of COVID-19: universality in real data and a predictive analytical description. Proc. R. Soc. 2021 Feb 03;477(2246): 1-16. https://doi.org/10.1098/rspa.2020.0689
Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys. 1988; 52: 479–487. https://doi.org/10.1007/BF01016429
Weron K, Kotulski, M. On the equivalence of the parallel channel and the correlated cluster relaxation models. J Stat Phys. 1997;88:1241–1256. https://doi.org/10.1007/BF02732433
Sotolongo-Costa O, Weberszpil J, Oscar Sotolongo-Grau O. A fractal viewpoint to covid-19 infection. medRxiv: 2020.06.03.20120576v2[preprint]. [Posted 2020 June17]:[16p.]https://doi.org/10.1101/2020.06.03.20120576

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Nova Scientia