Propagation of SARS-CoV-2 in Cuba. A qualitative viewpoint from the complex systems theory
PDF (Español (España))

Keywords

epidemias
modelos
estadística
caos
complejidad
dinámica
extensividad
relajación
contagio
sistemas
matemáticas
propagación epidemics
models
statistics
chaos
complexity
dynamics
extensivity
relaxation
contagion
systems
mathematics
propagation

How to Cite

Sotolongo Costa, Óscar, & Guzmán Martínez, F. . (2023). Propagation of SARS-CoV-2 in Cuba. A qualitative viewpoint from the complex systems theory. Nova Scientia, 15(30), 1–19. https://doi.org/10.21640/ns.v15i30.3107

Abstract

We describe some properties of the evolution of the COVID-19 pandemic that reveal its behavior as a complex system. The propagation mechanism shows a Poincaré section with fractal dimension 1 < D < 2. The present period of apparent recovery shows a relaxation with non-extensive statistical properties.

https://doi.org/10.21640/ns.v15i30.3107
PDF (Español (España))

References

Rosa W, Weberszpil J. Dual conformable derivative: Definition, simple properties and perspectives for applications. Chaos, Solitons & Fractals. 2018 Dec;117:137-41.

Weberszpil J, Godinho C, Liang Y. Dual conformable derivative: Variational approach and nonlinear equations. EPL (Europhysics Letters). 2020 Jan;128:31001. 10.1209/0295-5075/128/31001

Tsallis C, Tirnakli U. Predicting COVID-19 peaks around the world. medRxiv:10.3389/fphy.2020.00217 [preprint].[Posted 2020 May 04]:[6 p.]. https://doi.org/10.1101/2020.04.24.20078154https://www.medrxiv.org/content/early/2020/05/04/2020.04.24.20078154.full.pdf.

Weberszpil J, Lazo M J, Helayël-Neto J. On a connection between a class of q-deformed algebras and the Hausdorff derivative in a medium with fractal metric.Physica A: Statistical Mechanics and its Applications. 2015 Oct;436:399-404.https://doi.org/10.1016/j.physa.2015.05.063

Kermack W O, McKendrick A G. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London Series A. 1927;115:700-721. https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118

Korsch H J, Jodl H J. Chaos. A program collection for the PC. 2nd rev. ed. Berlin-Heidelberg: Springer; 1998. 312 p. 10.1007/978-3-662-03866-6.

Binney J J, Dowrick N J, Fisher A J, Newman M E J. The Theory of Critical Phenomena. Oxford: Clarendon Press; 1992.

Bak P, Tang C, Wiesenfeld K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev Letters. 1987;59(4-27):381.

Zipf G K. Human Behavior and the principle of the least effort. An Introduction to Human Ecology. Cambridge, Mass.: Addison-Wesley; 1949. 573 p.

West G. Scale. The universal laws of growth, innovation, sustainability, and the pace of life in organisms, cities, economies, and companies. Nueva York: Penguin Press; 2017. 496 p. 10.1177/2399808317735012.

Mandelbrot B. The Fractal Geometry of Nature. W. H. Freeman and Company; 1983.

Das S K. A scaling investigation of pattern in the spread of COVID-19: universality in real data and a predictive analytical description. Proc. R. Soc. 2021 Feb 03;477(2246): 1-16. https://doi.org/10.1098/rspa.2020.0689

Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys. 1988; 52: 479–487. https://doi.org/10.1007/BF01016429

Weron K, Kotulski, M. On the equivalence of the parallel channel and the correlated cluster relaxation models. J Stat Phys. 1997;88:1241–1256. https://doi.org/10.1007/BF02732433

Sotolongo-Costa O, Weberszpil J, Oscar Sotolongo-Grau O. A fractal viewpoint to covid-19 infection. medRxiv: 2020.06.03.20120576v2[preprint]. [Posted 2020 June17]:[16p.]https://doi.org/10.1101/2020.06.03.20120576

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Nova Scientia