Population rate of quantum states and the reverse of the arrow of time
PDF

Keywords

arrow of time
time inversion
qubits
reservoir
noise
quantum
states
population
rate
computation
systems
temperature
devices flecha del tiempo
inversión temporal
cubits
reserva
ruido cuántico
estados
población
razón
computación
sistemas
temperatura
dispositivos

How to Cite

Ávila Aoki, M., & Hernández Vázquez, J. E. (2022). Population rate of quantum states and the reverse of the arrow of time. Nova Scientia, 14(29). https://doi.org/10.21640/ns.v14i29.3099

Abstract

Recently it has been pointed out that an outstanding application of an IBM quantum computer is to reverse the arrow of time (Lesovik et al., 2019). It is explored such a possibility in a two qubits system coupled to a common structured reservoir at zero temperature. It is shown that population rates of the quantum states become the same both towards the remote past and towards the remote future. A two qubits system in presence of noise can reverse the arrow of time.

https://doi.org/10.21640/ns.v14i29.3099
PDF

References

Bernhardt, C. (2019). Quantum Computing for Everyone. The MIT Press. https://doi.org/10.1038/s41928-019-0223-4

Lesovik, G. B., Sadovskyy, I. A., Suslov, M. V., Lebedev, A. V., & Vinokur, V. M. (2019). Arrow of time and its reversal on the IBM quantum computer. Scientific Reports, 9, 4396. https://doi.org/10.1038/s41598-019-40765-6

Lloyd, S., Maccone, L., García-Patron, R, Giovannetti, V., & Shikano, Y. (2011) The quantum mechanics of time travel through post-selected teleportation. Physical Review D, 84, 025007. 10.1103/PhysRevD.84.025007

Lloyd, S. (2013). On the spontaneous generation of complexity in the universe. In C. Lineweaver, P. Davies, & M. Ruse (Eds.). Complexity and the Arrow of Time (pp. 80-112). Cambridge: Cambridge University Press. 10.1017/CBO9781139225700.007

Maniscalco, S., Francica, F., Zaffino, R. L., LoGullo, N., & Plastina, F. (2008). Protecting Entanglement via the Quantum Zeno Effect. Physical Review Letters, 100, 090503. https://doi.org/10.1103/PhysRevLett.100.090503

Negoro, M., Mitarai, K., Fujii, K., Nakajima, K., & Kitagawa, M. (2018). Machine learning with controllable quantum dynamics of a nuclear spin ensemble in a solid. arXiv, https://doi.org/10.48550/arXiv.1806.10910

Nielsen, M., & Chuang, I. A. (2000). Quantum Information and Quantum Computation. Cambridge University Press.

Sakurai, J. J., & Napolitano, J. (2017). Modern Quantum Mechanics. Cambridge University Press.

Wigner, E. (1932). On the Quantum Correction For Thermodynamic Equilibrium. Physical Review Journals Archive, 40, 749. https://doi.org/10.1103/PhysRev.40.749

Yang, X., & Xiao, J-.H. (2013). Dynamics of quantum discord for a two-qubit system. Optoelectronics Letters, 9, 69-72. https://doi.org/10.1007/s11801-013-2289-y

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Nova Scientia