Towards lane detection using a generative adversarial network
DOI:
https://doi.org/10.21640/ns.v15i31.3094Keywords:
segmentation, machine learning, neural networks, color spaces, TuSimple, GAN, traffic accidents, assitance systems, highways, collisionsAbstract
Traffic accidents are one of the main causes of death in Mexico, the collisions are caused mostly due to human error, therefore attempts have been made to reduce these shortcomings with driver assistance systems. This paper presents a study conducted to explore the capabilities of a Generative Adversarial Network in terms of application in lane detection on a highway, it is proposed to use a metric known as Dice index which measures the similarity between images and a pre-processing method based on color spaces, as well as a technique called Superpixels which is based on clustering. Finally, the results are compared with a neural network called LaneNet developed for the TuSimple database. The results obtained from this methodology needs to be optimized with future work, however, it opens the door to possible research with this type of network.
Downloads
References
Amirkhani, D., & Bastanfard, A. (2021, 4). An objective method to evaluate exemplar-based inpainted images quality using Jaccard index. doi:10.1007/s11042-021-10883-3
Assidiq, A. A., Khalifa, O. O., Islam, M. R., & Khan, S. (2008, 5). Real time lane detection for autonomous vehicles. 2008 International Conference on Computer and Communication Engineering. IEEE. doi:10.1109/iccce.2008.4580573
Carass, A., Roy, S., Gherman, A., Reinhold, J. C., Jesson, A., Arbel, T., . . . Oguz, I. (2020, 5). Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis. 10. doi:10.1038/s41598-020-64803-w
Chiu, K.-Y., & Lin, S.-F. (2005). Lane detection using color-based segmentation. IEEE Proceedings. Intelligent Vehicles Symposium, 2005. IEEE. doi:10.1109/ivs.2005.1505186
Dorj, B., Hossain, S., & Lee, D.-J. (2020, 3). Highly Curved Lane Detection Algorithms Based on Kalman Filter. Applied Sciences, 10, 2372. doi:10.3390/app10072372
Ghafoorian, M., Nugteren, C., Baka, N., Booij, O., & Hofmann, M. (2019). EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection. Springer International Publishing. doi:10.1007/978-3-030-11009-3_15
Hou, Y., Ma, Z., Liu, C., & Loy, C. C. (2019, 10). Learning Lightweight Lane Detection CNNs by Self Attention Distillation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. doi:10.1109/iccv.2019.00110
Huang, J., Kong, B., Li, B., & Zheng, F. (2007, 7). A New Method of Unstructured Road Detection Based on HSV Color Space and Road Features. 2007 International Conference on Information Acquisition. IEEE. doi:10.1109/icia.2007.4295802
INEGI. (2020, Agosto 26). Retrieved from https://www.insp.mx/avisos/4761-seguridad-vial-accidentes-transito.html
INSP. (2019). México, séptimo lugar mundial en siniestros viales. México, séptimo lugar mundial en siniestros viales. Retrieved from https://www.insp.mx/avisos/4761-seguridad-vial-accidentes-transito.html
Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2016, 11 21). Image-to-Image Translation with Conditional Adversarial Networks.
Karavaev, A., & Al-Naim, R. (2020). Light Invariant Lane Detection Method Using Advanced Clustering Techniques. Fifth Conference on Software Engineering and Information Management (SEIM-2020)(full papers), 66.
Kim, J., Kim, J., Jang, G.-J., & Lee, M. (2017, 3). Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection. Neural Networks, 87, 109–121. doi:10.1016/j.neunet.2016.12.002
Kim, Z. (2008, 3). Robust Lane Detection and Tracking in Challenging Scenarios. IEEE Transactions on Intelligent Transportation Systems, 9, 16–26. doi:10.1109/tits.2007.908582
Lee, S. (2017). Improving Jaccard Index for Measuring Similarity in Collaborative Filtering. Springer Singapore. doi:10.1007/978-981-10-4154-9_93
Li, Z.-Q., Ma, H.-M., & Liu, Z.-Y. (2016, 6). Road Lane Detection with Gabor Filters. 2016 International Conference on Information System and Artificial Intelligence (ISAI). IEEE. doi:10.1109/isai.2016.0099
Muthalagu, R., Bolimera, A., & Kalaichelvi, V. (2020, 7). Lane detection technique based on perspective transformation and histogram analysis for self-driving cars. Computers & Electrical Engineering, 85, 106653. doi:10.1016/j.compeleceng.2020.106653
Neven, D., Brabandere, B. D., Georgoulis, S., Proesmans, M., & Gool, L. V. (2018, 6). Towards End-to-End Lane Detection: an Instance Segmentation Approach. 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE. doi:10.1109/ivs.2018.8500547
Real, R., & Vargas, J. M. (1996, 9). The Probabilistic Basis of Jaccardtextquotesingles Index of Similarity. (R. Olmstead, Ed.) 45, 380–385. doi:10.1093/sysbio/45.3.380
Tusimple. (2017, Jul 17). Retrieved from https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
Wang, M., Liu, X., Gao, Y., Ma, X., & Soomro, N. Q. (2017, 8). Superpixel segmentation: A benchmark. Signal Processing: Image Communication, 56, 28–39. doi:10.1016/j.image.2017.04.007
Wang, Z., Ren, W., & Qiu, Q. (2018, 7 4). LaneNet: Real-Time Lane Detection Networks for Autonomous Driving.
Yang, W.-J., Cheng, Y.-T., & Chung, P.-C. (2019). Improved Lane Detection With Multilevel Features in Branch Convolutional Neural Networks. IEEE Access, 7, 173148–173156. doi:10.1109/access.2019.2957053
Zhang, J., Xu, Y., Ni, B., & Duan, Z. (2018). Geometric Constrained Joint Lane Segmentation and Lane Boundary Detection. In Computer Vision – ECCV 2018 (pp. 502–518). Springer International Publishing. doi:10.1007/978-3-030-01246-5_30
Zhang, Y., Lu, Z., Ma, D., Xue, J.-H., & Liao, Q. (2021, 3). Ripple-GAN: Lane Line Detection With Ripple Lane Line Detection Network and Wasserstein GAN. 22, 1532–1542. doi:10.1109/tits.2020.2971728
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nova Scientia

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Conditions for the freedom of publication: the journal, due to its scientific nature, must not have political or institutional undertones to groups that are foreign to the original objective of the same, or its mission, so that there is no censorship derived from the rigorous ruling process.
Due to this, the contents of the articles will be the responsibility of the authors, and once published, the considerations made to the same will be sent to the authors so that they resolve any possible controversies regarding their work.
The complete or partial reproduction of the work is authorized as long as the source is cited.