Towards lane detection using a generative adversarial network

Authors

DOI:

https://doi.org/10.21640/ns.v15i31.3094

Keywords:

segmentation, machine learning, neural networks, color spaces, TuSimple, GAN, traffic accidents, assitance systems, highways, collisions

Abstract

Traffic accidents are one of the main causes of death in Mexico, the collisions are caused mostly due to human error, therefore attempts have been made to reduce these shortcomings with driver assistance systems. This paper presents a study conducted to explore the capabilities of a Generative Adversarial Network in terms of application in lane detection on a highway, it is proposed to use a metric known as Dice index which measures the similarity between images and a pre-processing method based on color spaces, as well as a technique called Superpixels which is based on clustering. Finally, the results are compared with a neural network called LaneNet developed for the TuSimple database. The results obtained from this methodology needs to be optimized with future work, however, it opens the door to possible research with this type of network.

Downloads

Download data is not yet available.

Author Biographies

Tomás Emmanuel Juárez Vallejo , Autonomous University of Queretaro

Facultad de Ingeniería. Querétaro, México

Sebastián Salazar Colores, Optical Research Center

León, Guanajuato, México

Juan Manuel Ramos Arreguín, Autonomous University of Queretaro

Faculty of Engineering. Queretaro, Mexico

References

Amirkhani, D., & Bastanfard, A. (2021, 4). An objective method to evaluate exemplar-based inpainted images quality using Jaccard index. doi:10.1007/s11042-021-10883-3

Assidiq, A. A., Khalifa, O. O., Islam, M. R., & Khan, S. (2008, 5). Real time lane detection for autonomous vehicles. 2008 International Conference on Computer and Communication Engineering. IEEE. doi:10.1109/iccce.2008.4580573

Carass, A., Roy, S., Gherman, A., Reinhold, J. C., Jesson, A., Arbel, T., . . . Oguz, I. (2020, 5). Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis. 10. doi:10.1038/s41598-020-64803-w

Chiu, K.-Y., & Lin, S.-F. (2005). Lane detection using color-based segmentation. IEEE Proceedings. Intelligent Vehicles Symposium, 2005. IEEE. doi:10.1109/ivs.2005.1505186

Dorj, B., Hossain, S., & Lee, D.-J. (2020, 3). Highly Curved Lane Detection Algorithms Based on Kalman Filter. Applied Sciences, 10, 2372. doi:10.3390/app10072372

Ghafoorian, M., Nugteren, C., Baka, N., Booij, O., & Hofmann, M. (2019). EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection. Springer International Publishing. doi:10.1007/978-3-030-11009-3_15

Hou, Y., Ma, Z., Liu, C., & Loy, C. C. (2019, 10). Learning Lightweight Lane Detection CNNs by Self Attention Distillation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. doi:10.1109/iccv.2019.00110

Huang, J., Kong, B., Li, B., & Zheng, F. (2007, 7). A New Method of Unstructured Road Detection Based on HSV Color Space and Road Features. 2007 International Conference on Information Acquisition. IEEE. doi:10.1109/icia.2007.4295802

INEGI. (2020, Agosto 26). Retrieved from https://www.insp.mx/avisos/4761-seguridad-vial-accidentes-transito.html

INSP. (2019). México, séptimo lugar mundial en siniestros viales. México, séptimo lugar mundial en siniestros viales. Retrieved from https://www.insp.mx/avisos/4761-seguridad-vial-accidentes-transito.html

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2016, 11 21). Image-to-Image Translation with Conditional Adversarial Networks.

Karavaev, A., & Al-Naim, R. (2020). Light Invariant Lane Detection Method Using Advanced Clustering Techniques. Fifth Conference on Software Engineering and Information Management (SEIM-2020)(full papers), 66.

Kim, J., Kim, J., Jang, G.-J., & Lee, M. (2017, 3). Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection. Neural Networks, 87, 109–121. doi:10.1016/j.neunet.2016.12.002

Kim, Z. (2008, 3). Robust Lane Detection and Tracking in Challenging Scenarios. IEEE Transactions on Intelligent Transportation Systems, 9, 16–26. doi:10.1109/tits.2007.908582

Lee, S. (2017). Improving Jaccard Index for Measuring Similarity in Collaborative Filtering. Springer Singapore. doi:10.1007/978-981-10-4154-9_93

Li, Z.-Q., Ma, H.-M., & Liu, Z.-Y. (2016, 6). Road Lane Detection with Gabor Filters. 2016 International Conference on Information System and Artificial Intelligence (ISAI). IEEE. doi:10.1109/isai.2016.0099

Muthalagu, R., Bolimera, A., & Kalaichelvi, V. (2020, 7). Lane detection technique based on perspective transformation and histogram analysis for self-driving cars. Computers & Electrical Engineering, 85, 106653. doi:10.1016/j.compeleceng.2020.106653

Neven, D., Brabandere, B. D., Georgoulis, S., Proesmans, M., & Gool, L. V. (2018, 6). Towards End-to-End Lane Detection: an Instance Segmentation Approach. 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE. doi:10.1109/ivs.2018.8500547

Real, R., & Vargas, J. M. (1996, 9). The Probabilistic Basis of Jaccardtextquotesingles Index of Similarity. (R. Olmstead, Ed.) 45, 380–385. doi:10.1093/sysbio/45.3.380

Tusimple. (2017, Jul 17). Retrieved from https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection

Wang, M., Liu, X., Gao, Y., Ma, X., & Soomro, N. Q. (2017, 8). Superpixel segmentation: A benchmark. Signal Processing: Image Communication, 56, 28–39. doi:10.1016/j.image.2017.04.007

Wang, Z., Ren, W., & Qiu, Q. (2018, 7 4). LaneNet: Real-Time Lane Detection Networks for Autonomous Driving.

Yang, W.-J., Cheng, Y.-T., & Chung, P.-C. (2019). Improved Lane Detection With Multilevel Features in Branch Convolutional Neural Networks. IEEE Access, 7, 173148–173156. doi:10.1109/access.2019.2957053

Zhang, J., Xu, Y., Ni, B., & Duan, Z. (2018). Geometric Constrained Joint Lane Segmentation and Lane Boundary Detection. In Computer Vision – ECCV 2018 (pp. 502–518). Springer International Publishing. doi:10.1007/978-3-030-01246-5_30

Zhang, Y., Lu, Z., Ma, D., Xue, J.-H., & Liao, Q. (2021, 3). Ripple-GAN: Lane Line Detection With Ripple Lane Line Detection Network and Wasserstein GAN. 22, 1532–1542. doi:10.1109/tits.2020.2971728

Downloads

Published

2023-11-28

How to Cite

Juárez Vallejo , T. E., Salazar Colores, S., & Ramos Arreguín, J. M. (2023). Towards lane detection using a generative adversarial network. Nova Scientia, 15(31), 1–11. https://doi.org/10.21640/ns.v15i31.3094

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.