Supplementary cementitious materials as an alternative for the reduction of corrosion phenomena in reinforced concrete structures
PDF (Español (España))

Keywords

polarización
resistencia
película pasiva
concreto ternario
puzolanas
durabilidad
materiales
acero
concreto
corrosión
sistemas
indicadores
cemento portland polarization
resistance
passive film
ternary concrete
pozzolan
durability
materials
steel
concrete
corrosion
systems
indicators
portland cement

How to Cite

Landa Gómez, A. E., Fajardo San Miguel, G. ., Cruz Moreno, D. ., Orozco Cruz, R. ., & Galván Martínez, R. (2022). Supplementary cementitious materials as an alternative for the reduction of corrosion phenomena in reinforced concrete structures. Nova Scientia, 14(29). https://doi.org/10.21640/ns.v14i29.3027

Abstract

This research work shows the contribution of supplementary cementitious materials (SCMs) in reducing the corrosion phenomenon in steel embedded in ternary concrete. Ternary steel-concrete systems were developed, consisting of AISI 1018 (AC) steel embedded in ternary concrete with a water/cement ratio of 0.45. Partial substitutions were made with respect to the mass of ordinary portland cement (OPC) by sugarcane bagasse ash (SCBA) and fly ash (FA) at 10, 20 and 30 %, the value of these percentages corresponds to 50 % CBCA and 50 % CV. The systems were evaluated with the electrochemical polarization resistance (Rp) technique, where corrosion current density (icorr) and corrosion velocity (Vcorr) were analyzed as indicators to evaluate corrosion phenomenon. The steel-concrete system with 20 % substitution (AC-CT20), decreased the Vcorr by 89 % with respect to the reference system (AC-REF). This result was attributed to the AC being in a passive state, which was associated with the passive film formation that was confirmed by the value of the mean icorr of 0.09 µA/cm2.

https://doi.org/10.21640/ns.v14i29.3027
PDF (Español (España))

References

Andrade, C., y Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5), 315–328. https://doi.org/https://doi.org/10.1016/0950-0618(95)00044-5

Andrade, C., Soler, L., y Novoa, X. R. (1995). Advances in electrochemical impedance measurements in reinforced concrete. Materials Science Forum, 192–194(pt 2), 843–856. https://doi.org/10.4028/www.scientific.net/msf.192-194.843

Andrade, Carmen, Alonso, C., Gulikers, J., Polder, R., Cigna, R., Vennesland, Salta, M., Raharinaivo, A., y Elsener, B. (2004). Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Materials and Structures/Materiaux et Constructions, 37(273), 623–643. https://doi.org/10.1617/13952

Arenas-Piedrahita, J. C., Montes-García, P., Mendoza-Rangel, J. M., López Calvo, H. Z., Valdez-Tamez, P. L., y Martínez-Reyes, J. (2016). Mechanical and durability properties of mortars prepared with untreated sugarcane bagasse ash and untreated fly ash. Construction and Building Materials, 105, 69–81. https://doi.org/10.1016/j.conbuildmat.2015.12.047

Castro-Borges, P., Balancán-Zapata, M., y Zozaya-Ortiz, A. (2017). Electrochemical meaning of cumulative corrosion rate for reinforced concrete in a tropical natural marine environment. Advances in Materials Science and Engineering, 2017. https://doi.org/10.1155/2017/6973605

Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar, (CONADESUCA). (2019). 6to. Informe estadístico del sector agroindustrial de la caña de azúcar en México.

Cordeiro, G. C., Tavares, L. M., y Toledo Filho, R. D. (2016). Improved pozzolanic activity of sugar cane bagasse ash by selective grinding and classification. Cement and Concrete Research, 89, 269–275. https://doi.org/10.1016/j.cemconres.2016.08.020

Elsener, B., y Rossi, A. (2018). Passivation of Steel and Stainless Steel in Alkaline Media Simulating Concrete. In Encyclopedia of Interfacial Chemistry. Elsevier. https://doi.org/10.1016/b978-0-12-409547-2.13772-2

Franco-Luján, V. A., Maldonado-García, M. A., Mendoza-Rangel, J. M., y Montes-García, P. (2019). Chloride-induced reinforcing steel corrosion in ternary concretes containing fly ash and untreated sugarcane bagasse ash. Construction and Building Materials, 198, 608–618. https://doi.org/10.1016/j.conbuildmat.2018.12.004

Green, W. K. (2020). Steel reinforcement corrosion in concrete–an overview of some fundamentals. Corrosion Engineering Science and Technology, 55(4), 289–302. https://doi.org/10.1080/1478422X.2020.1746039

Hu, J., Deng, P., Li, X., Zhang, J., y Wang, G. (2018). The vertical Non-uniform corrosion of Reinforced concrete exposed to the marine environments. Construction and Building Materials, 183, 180–188. https://doi.org/10.1016/j.conbuildmat.2018.06.015

Kosmatka, S. H., Kerkhoff, B., Panarese, W. C., y Tanesi, J. (2004). Diseño y control de mezclas de Concreto. In Journal of Experimental Botany: Vol. Primera Ed. Portland Cement Association.

López Mendez, T. A., y Betancourt Hernández, D. (2019). Anuario Estadístico de la Minería Mexicana, 2019.

Maldonado-Bandala, E. E., Jiménez- Quero, V., Olguin-Coca, F. J., Lizarraga M, L. G., Baltazar-Zamora, M. A., Ortiz-C, A., Almeraya C, F., y Zambrano R, P. (2011). Electrochemical characterization of modified concretes with sugar cane bagasse ash. International Journal of Electrochemical Science, 6(10), 4915–4926.

Maurice, V., y Marcus, P. (2018). Progress in corrosion science at atomic and nanometric scales. Progress in Materials Science, 95, 132–171. https://doi.org/10.1016/j.pmatsci.2018.03.001

Mundra, S., Criado, M., Bernal, S. A., y Provis, J. L. (2017). Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes. Cement and Concrete Research, 100(August), 385–397. https://doi.org/10.1016/j.cemconres.2017.08.006

Oliveira, A. M. de, y Cascudo, O. (2018). Effect of mineral additions incorporated in concrete on thermodynamic and kinetic parameters of chloride-induced reinforcement corrosion. Construction and Building Materials, 192, 467–477. https://doi.org/10.1016/j.conbuildmat.2018.10.100

Paris, J. M., Roessler, J. G., Ferraro, C. C., Deford, H. D., y Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. In Journal of Cleaner Production (Vol. 121, pp. 1–18). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2016.02.013

Popov, B. N. (2015). Corrosion of Structural Concrete. In Corrosion Engineering. https://doi.org/10.1016/b978-0-444-62722-3.00012-4

Ribeiro, D. V., y Abrantes, J. C. C. (2016). Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Construction and Building Materials, 111, 98–104. https://doi.org/10.1016/j.conbuildmat.2016.02.047

Ríos-Parada, V., Jiménez-Quero, V. G., Valdez-Tamez, P. L., y Montes-García, P. (2017). Characterization and use of an untreated Mexican sugarcane bagasse ash as supplementary material for the preparation of ternary concretes. Construction and Building Materials, 157, 83–95. https://doi.org/10.1016/j.conbuildmat.2017.09.060

Rivera-Corral, J. O., Fajardo, G., Arliguie, G., Orozco-Cruz, R., Deby, F., y Valdez, P. (2017). Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: Effect of surface finish. Construction and Building Materials, 147, 815–826. https://doi.org/10.1016/j.conbuildmat.2017.04.186

Sales, A., y Lima, S. A. (2010). Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Management, 30(6), 1114–1122. https://doi.org/10.1016/j.wasman.2010.01.026

Sánchez-Moreno, M., Takenouti, H., García-Jareño, J. J., Vicente, F., y Alonso, C. (2009). A theoretical approach of impedance spectroscopy during the passivation of steel in alkaline media. Electrochimica Acta, 54(28), 7222–7226. https://doi.org/10.1016/j.electacta.2009.07.013

Scrivener, K. L., John, V. M., y Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114(March), 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015

Sohail, M. G., Kahraman, R., Alnuaimi, N. A., Gencturk, B., Alnahhal, W., Dawood, M., y Belarbi, A. (2020). Electrochemical behavior of mild and corrosion resistant concrete reinforcing steels. Construction and Building Materials, 232, 117205. https://doi.org/10.1016/j.conbuildmat.2019.117205

Stern, M., y Geary, A. L. (1957). Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves. Journal of the Electrochemical Society, 104(1), 56–63. https://doi.org/10.1149/1.2428496

Trocónis de Rincón, O., Romero de Carruyo, A., Andrade, C., Helene, P., y Díaz, I. (2000). Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado (3ra.). CYTED.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Nova Scientia