Dynamics of holes wave-packets under Rashba spin-orbit coupling
DOI:
https://doi.org/10.21640/ns.v5i9.2820Keywords:
Spintronics, spin-orbit coupling, spin-polarized transport in semiconductors, spin field effect transistorsAbstract
The dynamics of a Gaussian wave-packet of heavy holes is studied in the presence of Rashba spin-orbit interaction for a quasi-one-dimensional semiconductor system. A finite-difference scheme, based on the Cayley approach, has been extended to solve the time-dependent Schrödinger equation for holes. It is shown the phenomenon of hole-spin precession via a numerical simulation of the temporal evolution of the components of the wave-packet. It is possible to evaluate relevant parameters, e. g. dimensions and the spin polarization flip-time, when a spin field effect transistor device, is modeled for holes as carriers.
Downloads
References
Awschalom, David. D. and Michael. E. Flatté. (2007). Challenges for semiconductor Spintronics. Nature Phys. 3:153-159.
Bonfanti-Escalera, Giacomo G. (2008). Inecuación de Heisenberg entre tiempo y energía: Interpretaciones, Falacias y Aplicaciones. Diploma Thesis, Universidad IberoamericanaUniversidad de La Habana.
Bychkov, Yu. A. and Emmanuel I. Rashba. (1984). Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Solid State Phys. 17: 6039-6045.
Cuan, R. and L. Diago-Cisneros. (2010). Dispersión dependiente del espín de paquetes de ondas de huecos en hilos cuánticos. Rev. Cub. Fis. 27 (2B): 212-218.
Datta, Supriyo and Biswajit Das. (1990). Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56 (7): 665-667.
Goldberg, Abraham, Harry M. Schey and Judah L. Schwartz. (1967). Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena. Am. J. Phys. 35 (3): 177-186.
Governale, Michele and Ulrich Zülicke. (2003). Filtering spin with tunnel-coupled hole quantum wires. J. Supercond 16 (2): 257-260.
Guzenko, V. A., J. Knobbe, H. Hardtdegen, Th. Schäpers and A. Bringer. (2006). Rashba effect in InGaAs/InP parallel quantum wires. Appl. Phys. Lett 88 (3): 032102 1-3.
Gvozdic´, D. M. and U. Ekenberg. (2006). Investigation of the super-efficient Rashba effect by simulation of Shubnikov–de Haas oscillations in a two-dimensional hole gas. Physica E 34: 377-380.
Häusler, Wolfgang. (2004). Dephasing in Rashba spin precession along multichannel quantum wires and nanotubes. Phys. Rev. B 70: 115313 1-6.
Jordan, Charles. (1950). Calculus of finite differences. New York: Chelsea Publishing Company.
Ochoa-Fajardo, Marysol. (2006). Estudio de la dinámica de paquetes de onda espín polarizados en presencia de acoplamiento espín-órbita. Diploma Thesis, Universidad Autónoma de Baja California.
Pala, Marco G., Michele Governale, Jürgen König, Ulrich Zülicke and Giuseppe Iannaccone. (2004). Two-dimensional hole precession in an all-semiconductor spin field effect transistor. Phys. Rev. B 69: 045304 1-9.
Pereyra, Pedro and Herbert P. Simanjuntak. (2007), Time evolution of electromagnetic wave packets through superlattices: Evidence for superluminal velocities. Phys. Rev. E 75: 056604 1-7.
Sánchez, David, Llorenç Serra and Mahn-Soo Choi. (2008). Strongly modulated transmission of a spin-split quantum wire with local Rashba interaction. Phys. Rev. B 77: 035315 1-11.
Tung, Hsin-Han and Chien-Ping Lee. (1996). An energy band-pass filter using superlattice structures. IEEE Journal of Quantum Electronics 32 (3): 507-512.
Tung, Hsin-Han and Chien-Ping Lee. (1996). A novel energy filter using semiconductor superlattices and its application to tunneling time calculations. IEEE Journal of Quantum Electronics 32 (12): 2122-2127.
Vurgaftman, I., J. R. Meyer and L. R. Ram-Mohan. (2001). Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89 (11): 5815-5875.
Winkler, R., H. Noh, E. Tutuc and M. Shayegan. (2002). Anomalous Rashba spin splitting in two-dimensional hole systems. Phys. Rev. B, 65: 155303 1-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Nova Scientia

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Conditions for the freedom of publication: the journal, due to its scientific nature, must not have political or institutional undertones to groups that are foreign to the original objective of the same, or its mission, so that there is no censorship derived from the rigorous ruling process.
Due to this, the contents of the articles will be the responsibility of the authors, and once published, the considerations made to the same will be sent to the authors so that they resolve any possible controversies regarding their work.
The complete or partial reproduction of the work is authorized as long as the source is cited.