Comparative life cycle analysis of three types of indoor luminaries used in buildings

Authors

  • Silverio Hernández Moreno Facultad de Arquitectura y Diseño, Universidad Autónoma del Estado de México

DOI:

https://doi.org/10.21640/ns.v7i14.257

Keywords:

life cycle, active lighting, environmental impacts, global warming, ecological energy

Abstract

This paper discusses the results of a comparative life cycle analysis of three types of luminaries commonly used today in artificial lighting of architectural and indoors buildings; comparing the environmental impacts to know how much quantitatively contribute to global warming, primarily by CO2 emissions to the atmosphere. The analysis was done through information derived of a Software simulation lifecycle product (GaBi®), particularly using the evaluation methodology called Life Cycle Assessment (LCA) that focuses primarily on assessing the environmental impacts associated with a product throughout its whole life, in accordance with the international ISO 14040 standard (concerning to methodology of Life Cycle Analysis). The results show that the power consumption of incandescent was 5.55 times the fluorescent lamp and 8 times the LED; the production phase, use and disposal phases of the incandescent lamp (49334.4 CO2e) in the example of the present study contributes to global warming 29.87 times more than fluorescent (1651.2 Kg. CO2e) and 146.82 times the LED (336 Kg. CO2e). We conclude that the LED luminaire is the best choice considering the whole entire life cycle of the product including the cost. On the other hand, if only the production phase is valued, the best option would be incandescent, but of course it would be a very limited parameter that must be taken into account all phases of the life cycle including analysis of the cost for each phase (production, use and maintenance and end of service life and disposal). Regarding the fluorescent luminaire could be the best option since there is a wide range of products where prices vary significantly and could be a good option for saving the proper selection of lighting equipment

Downloads

Download data is not yet available.

Author Biography

Silverio Hernández Moreno, Facultad de Arquitectura y Diseño, Universidad Autónoma del Estado de México

PROFESOR INVESTIGADOR DEL CENTRO DE INVESTIGACIONES EN ARQUITECTURA Y DISEÑO (ciad) DE LA UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO.

References

Congreso Americano (2007). Energy Independence and Security Act of 2007. Congreso de Estados Unidos de Norteamérica. http://thomas.loc.gov/cgi-bin/bdquery/z?d110:HR00006:@@@D&summ2=m&. (Consultado el 27 de agosto de 2014).

Hartmann D. L. (1996). Global Physical Climatology: Academic Press, Nueva York, Estados Unidos de Norteamérica.http://www.ciraig.org/pdf/LCA_light_bulbs_final_summary.pdf. (Consultado el 14 de Agosto de 2014).

International Association of Energy-Efficient Lighting. (1995). Power Quality and Lighting. www.iaeel.org/iaeel/newsl/1995/trefyra1995/LiTech_a_3_4_95.html. (Consultado el 10 de Agosto de 2014).

ISO (1997). ISO 14040: Environmental Management – Life Cycle Assessment– Principles and Framework: ISO, Suiza.

Michaud, R., Belely, C., Clement, E., Margni, M. y Samson, R. (2014). Comparative life cycle assessment of light bulbs: Incandescents and Compact Fluorescents. www.energystar.gov/index.cfm?c=cfls.pr_cfls. (Consultado el 10 de Agosto de 2014).

Parsons, D. (2006). The Environmental Impact of Compact Fluorescent Lamps and Incandescent Lamps for Australian Conditions, en The Environmental Engineer 3 (4), pp. 124-137.

Principi Paolo y Fioretti Roberto. (2014). A comparative life cycle assessment of luminaires for general lighting for the office – compact fluorescent (CFL) vs Light Emitting Diode (LED) – a case study, Journal of Cleaner Production, 83 (15), pp. 96-107.

Ryckaert W.R., Smet K.A.G., Roelandts I.A.A., Van Gils M. y Hanselaer P. (2012). Linear LED tubes versus fluorescent lamps: An evaluation, Energy and Buildings, 49 (2012), pp. 429-436.

Secretaría de energía. (2010). NOM-028-ENER-2010: Eficiencia energética de lámparas para uso general. Límites y métodos de prueba: Secretaría de Energía, México.

Soneji, H. (2008). Life Cycle Energy Comparison Of Compact Fluorescent and Incandescent Light Bulbs. Sustainability Science Paper, 12. http://www.djluv.com/career/research/Soneji-CFL-LCASustPaper.pdf. (Consultado el 1 de Agosto de 2014).

Tosenstock, S. (2007). Another perspective en Electric Perspectives, 32 (59), pp. 100-105.

Welz Tobias, Hischier Roland, Hilty Lorenz M. (2011). Environmental impacts of lighting technologies — Life cycle assessment and sensitivity analysis, Environmental Impact Assessment Review, 31 (3), pp. 334-343.

Published

2015-05-25

How to Cite

Hernández Moreno, S. (2015). Comparative life cycle analysis of three types of indoor luminaries used in buildings. Nova Scientia, 7(14), 538–559. https://doi.org/10.21640/ns.v7i14.257

Issue

Section

Human and Social Sciences

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.