Influence of meteorological conditions on shortterm radon level in an underground laboratory

Authors

  • Javier García-Tobar Centro de Estudios y Experimentación de Obras Públicas, Madrid

DOI:

https://doi.org/10.21640/ns.v6i12.25

Keywords:

radon, meteorology, ionization chamber, periodicity

Abstract

The aim of this paper is to investigate the influence of meteorology on short-term radon level of an underground laboratory. Radon concentration and ambient parameters were measured hourly at the same time between 2011 and 2013. Simultaneously, the meteorological data were obtained from the nearest weather station. Pearson's coefficients were determined among hourly radon and the rest of variables. The results show that there is a weak linear correlation among radon concentration and single variables like pressure, temperature and humidity. The same occurs with parameters formed by differences between indoor and outdoor values. For these reasons, a linear multiple regression model is used to explain variability in radon based on meteorogical parameters. Otherwise, time-series data were analyzed using the Lomb-Scargle method. Periodicities were found in the radon data which also appear in meteorogical series.

Downloads

Download data is not yet available.

References

Arvela H. y Winquist K. (1989). A model for indoor radón variations. “Environment International”, 15, 239–246.

Aumento F. (2002). Radon tides on an active volcanic island: Terceira, Azores, “Geofísica Internacional”, 41, 499–505.

Ball T.K., Cameron D.G., Colma T.B. y Roberts P.D. (1991). Behavior of radon in the geological environment: a review. “The Quarterly Journal of Engineering Geology”, 24, 169–182.

Barreira F. (1961). Concentration of atmospheric radon and wind direction. "Nature", 190, 1092–1093.

Bossew P. (2005). A very long-term HPGe-background gamma spectrum. "Applied Radiation and Isotopes", 62, 635–644.

Butterweck G., Reineking A., Kesten J. y Porstendörfer J. (1994). The use of the natural radioactive noble gases radon and thoron as tracers for the study of turbulent exchange in the atmospheric boundary layer: Case study in and above a wheat field. "Atmospheric Environment", 28, 1963–1969.

Consejo de Seguridad Nuclear (2010). Guía de Seguridad GSG-11.01: Directrices sobre la competencia de los laboratorios y servicios de medida de radón en aire. Editado por el Consejo de Seguridad Nuclear, 15–16.

Crockett R.G.M., Gillmore G.K., Phillips P.S., Denman A.R. y Groves-Kirby C.J. (2006). Tidal synchronicity of built-environment radon levels in the UK. “Geophysical”, Research Letters 33.

Dubčáková R. y Praks P. (2010). Statistical modeling of indoor radon concentration using meteorological parameters. “Reliability: Theory & Applications”, 16, 32–39.

Dueñas C., Pérez M., Fernández M.C. y Carretero J. (1996). Radon concentrations in surface air and vertical atmospheric stability of the lower atmosphere. “Journal of Environmental Radioactivity”, 31, 87–102.

Eaton R.S. y Scott A.G. (1984). Understanding radon transport into houses. “Radiation Protection Dosimetry”, 7, 251–253.

Finkelstein M., Eppelbaum L.V. y Price C. (2006). Analysis of temperature influences on the amplitude frequency characteristics of radon gas concentration. “Journal of Environmental Radioactivity”, 86, 251–270.

Galmarini S. (2006). One year of 222Rn concentration in the atmospheric surface layer. “Atmospheric Chemistry and Physics”, 6, 2865–2886.

Genitron Instruments (2013). Products: Radon Monitoring with AlphaGUARD (online).

http://saphymo.de//download/ag_fb_gb_05_2011.pdf (1 de septiembre de 2013).

Groves-Kirby C.J., Denman A.R., Crockett R.G., Phillips P.S. y Gillmore G.K. (2006). Identification of tidal and climatic influences within domestic radon time series from Northampton shire, UK. “Science of the Total Environment”, 367, 191–202.

Jacob D.J. y otros 30 autores (1997). Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers. "Journal of Geophysical Research", 102, 5953–5970.

Javorsek D., Sturrock P.A., Lasenby R.N., Lasenby A.N., Buncher J.B., Fischbach E., Gruenwald J.T., Hoft A.W., Horan T.J., Jenkins J.H., Kerford J.L., Lee R.H., Longman A., Mattes J.J., Morreale B.L., Morris D.B., Mudry R.N. y Newport J.R (2010). Power spectrum analysis of nuclear decay rates. "Astroparticle Physics", 34, 173–178.

Jelle B.P. (2012). Development of a model for radon concentration in indoor air. “Science of the Total Environment”, 416, 343–350.

Kolarž P.M., Filipović D.M. y Marinković B.P. (2009). Daily variations of indoor air-ion and radon concentrations. "Applied Radiation Isotopes", 67, 2062–2067.

Liu C.L., Zhao Y.J., Li S.S., Teng H.J. y Wang Z.M. (2007). Influence of ventilation on the reduction of the radon concentration in an underground research facility. “Journal of Radioanalytical and Nuclear Chemistry”, 274, 507–510.

Lomb N.R. (1976). Least-squares frequency analysis of unequally spaced data. "Astrophysics and Space Science", 39, 447–462.

Miles J.C.H y Algar R.A. (1988). Variations in radon-222 concentrations. "Journal Radiological Protection", 8, 103–105.

Nero A.V. y Nazaroff W.W. (1984). Characterising the source of Radon indoors. “Radiation Protection Dosimetry”, 7, 23–39.

Perrier F. y Richon P. (2010). Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing. "Journal of Environmental Radioactivity", 101, 279–296.

Pinault J.L. y Baubron J.C. (1997). Signal processing of diurnal and semidiurnal variations in Radon and atmospheric pressure: a new tool for accurate in situ measurement of soil gas velocity, pressure gradient, and tortuosity. “Journal of Geophysical Research”, 102, 18101–18120.

Podstawczyńska A., Kozak K., Pawlak W. y Mazur J. (2010). Seasonal and diurnal variation of outdoor radon (222Rn) concentrations in urban and rural area with reference to meteorological conditions. "Nukleonika, International Journal of Nuclear Research", 55, 543–547.

Press W.H., Teukolsky S.A. y Vetterling W.T. y Flannery B.P. (1992). Numerical recipes in C: The art of scientific computing, 2th ed., University Press, New York.

Richon P., Perrier F., Pili E. y Sabroux J.-C. (2009). Detectability and significance of 12 h barometric tide in radon-222 concentration, flow rate and carbon dioxide concentration in an underground tunnel. "Geophysics Journal Inernational", 176, 683–694.

Sakashita T., Doi M., Nakamura Y. y Lida T. (2004). A case study of radon-222 transport from continental North-East Asia to the Japanese islands in winter by numerical analysis. "Journal of Environmental Radioactivity", 72, 245–257.

Scargle J.D. (1982). Statistical aspects of spectral analysis of unevenly spaced data. "Astrophysics Journal", 263, 835–853.

Shapiro M.H., Rice A., Mendenhall M.H., Melvin J.D. y Tombrello T.A. (1985). Recognition of environmentally caused variations in Radon time series. “Pure and Applied Geophysics”, 122, 311–326.

Simion F., Cuculeanu V., Simion E. y Geicu A. (2013). Modeling the 222Rn and 220Rn progeny concentrations in atmosphere using multiple linear regression with meteorogical variables as predictors. “Romanian Reports in Physics”, 65, 524–544.

Udovičić V., Grabež B., Dragić A., Banjanac R., Joković D., Panić B., Joksimović D., Puzović J. y Aničin I. (2009). Radon problem in an underground low-level laboratory. "Radiation Measurements", 44, 1009–1012.

Udovičić V., Aničin I., Joković D., Dragić A., Banjanac R., Grabež B. y Veselinović N. (2011). Radon time-series analysis in the underground low-level laboratory in Belgrade, Serbia. “Radiation Protection Dosimetry”, 145, 155–158.

Ulomov V.I. y Mavashev B.Z. (1967). A Precursor of a strong tectonic earthquake. "Academy Science, U.S.S.R., Earth Science Section", 176, 9–11.

Vanmunster T. (2007). Peranso Period Analysis Software, Peranso version 2.50, CBA Belgium Observatory. http://www.peranso.com (1 de junio de 2013).

Vasilyev A.V. y Zhukovsky M.V. (2013). Determination of mechanisms and parameters which affect radon entry into a room. “Journal of Envirnomental Radioactivity”, 124, 185–190.

Virk H.S., Walia V., Sharma A.K., Kumar A. y Kumar R. (2000). Correlation of radon anomalies with microseismic events in Kangra and Chamba valleys of N-W Himalaya. “Geofísica Internacional”, 39, 221–227.

Wakita H., Nakamura Y., Notsu K., Noguchi M. y Asada T. (1980). Radon Anomaly: A Possible Precursor of the 1978 Izu-Oshima-kinkai Earthquake. "Science", 22 , 882–883.

Weinlich F.H., Faber E., Bouskova A., Horalek J., Teschner M. y Poggenburg J. (2006). Seismically induced variations in Marianske Lazne fault gas composition in the NW Bohemian swarm quake region, Czech Republic – A continuous gas monitoring. “Tectonophysics”, 421, 89–110.

Yu K.N., Young E.C.M. y Li K.C. (1996). A study of factors affecting indoor Radon properties. “Health Physics”, 71, 179–184.

Published

2014-10-08

How to Cite

García-Tobar, J. (2014). Influence of meteorological conditions on shortterm radon level in an underground laboratory. Nova Scientia, 6(12), 78–107. https://doi.org/10.21640/ns.v6i12.25

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.