Magneto-electric coupling constants in piezoelectric/piezomaganetic layered composite

Authors

  • Joanka Hernández Cabanas Instituto de Física, UNAM, Escuela de Ingeniería y Ciencias, Instituto de Estudios Superiores y Tecnológicos de Monterrey
  • Guillermo Monsivais Galindo Instituto de Física, UNAM https://orcid.org/0000-0003-1541-3468
  • José Antonio Otero Hernández Escuela de Ingeniería y Ciencias, Instituto de Estudios Superiores y Tecnológicos de Monterrey

DOI:

https://doi.org/10.21640/ns.v13i26.2456

Keywords:

Magnetoelectric effects, Piezoelectric constants, Composite materials, magnetoelasticity, electroelasticity, Electromagnetic elasticity, PACS: 46.25.Hf; 75,85 t; 77.65.Bn; 77.84.Lf

Abstract

During the last few years, piezoelectric/piezomagnetic composites have been studied due to the numerous applications related to the coupling between these materials and the fields. In the present work, two theoretical models for calculating the magneto/electric coupling factor of the composite with 2-2 connectivity, are presented. Using the asymptotic homogenization method, the effective coefficients of a periodic magneto–electro–elastic layered composite can be obtained in matrix form. By using this matrix, a two-layered composite formed by BaTiO3 and CoFe2O4 are studied, and expressions for the effective coefficients are obtained. The effective magneto/electric coupling factor as a function of the piezoelectric volumetric fraction are found from these particular coefficients. In addition, a dynamic model of the multilayer piezoelectric/piezomagnetic composite is discussed. The dynamical model has been used to determinate the magnetoelectric coupling constants.

Downloads

Download data is not yet available.

References

Bakhvalov and Panasenko (1989). Averaging processes in periodic media. Kluwer, Dordrecht.

Cabanas, J. H. Otero, J. A. Bravo-Castillero, J. Rodríguez-Ramos, R. and Monsivais, G. (2010). Laminados magneto-electro-elásticos con variaciones en la orientación de la magnetización. Nova Scientia 2 (4) 58-76. https://doi.org/10.21640/ns.v2i4.210

Fang F., Zhou Y., Xu Y. T., Jing W. Q. and Yang W. (2013) Magnetoelectric coupling of multiferroic composites under combined magnetic and mechanical loadings. Smart Materials and Structures (22) 7075009. https://doi.org/10.1088/0964-1726/22/7/075009

Fu, J. Santa Rosa, W. M'Peko, J. C. Algueró, M. and Veneta, M. (2016). Magnetoelectric coupling in lead-free piezoelectric Lix(K0.5Na0.5)1 − xNb1 − yTayO3 and magnetostrictive CoFe2O4 laminated composites. Physics Letters A 380 (20) 1788-1792. https://doi.org/10.1016/j.physleta.2016.03.024

Hohenberger, S. Lazenka, V. Temst, K. Selle, S. Patzig, C. Höche, T. Grundmann C. and Lorenz, M. (2018) Effect of double layer thickness on magnetoelectric coupling in multiferroic BaTiO3 -Bi 0.95Gd 0.05 FeO 3 multilayers. Journal of Physics D: Applied Physics. 51 (18) 184002. https://doi.org/10.1088/1361-6463/aab8c9

Kuo, HY. and Hsin, K. C. (2018) Functionally graded piezoelectric–piezomagnetic fibrous composites. Acta Mechanic 229 (4) 1503-1516. https://doi.org/10.1007/s00707-017-2065-3

Pérez-Fernández, L. D., Bravo-Castillero, J., Rodríguez-Ramos, R. and Sabina, F. J. (2009). On the constitutive relations and energy potentials of linear thermo-magneto-electro-elasticity. Mechanics Research Communications 36, 343–350. https://doi.org/10.1016/j.mechrescom.2008.10.003

Pobedrya, B. E. (1984). Mechanics of composite materials. Moscow State University Press, Moscow

Praveen, J. Reddy, V. Chandrakala, E. and Indla, S. Dineshkumar, S. Subramanian, V. and Das, D. (2018) Enhanced magnetoelectric coupling in Ti and Ce substituted lead free CFO-BCZT laminate composites. Journal of Alloys and Compounds. 750 392-400. https://doi.org/10.1016/j.jallcom.2018.04.026

Qiu, J. Wen, Y. Li, P. and Chen, H. (2014). Magnetoelectric coupling characteristics of five-phase laminate composite transducers based on nanocrystalline soft magnetic alloy. Applied Physics Letters 104 (11) 112401. https://doi.org/10.1063/1.4868983

Shi Y. (2018) Modeling of nonlinear magnetoelectric coupling in layered magnetoelectric nanocomposites with surface effect. Composite Structures 185 474 – 482. https://doi.org/10.1016/j.compstruct.2017.11.019

Zhang, Q. M. and Geng, X. (1994). Dynamic modeling of piezoceramic polymer composite with 2-2 connectivity. Journal of Applied Physics 76 6014-6016. https://doi.org/10.1063/1.358354

Zeng, Y. Bao, Yi, G. J. Zhang, G. and Jiang, S. (2015). Study on electronic structures and mechanical properties of new predicted orthorhombic Mg2SiO4 under high pressure Journal of Alloys and Compounds (630) 11-22. https://doi.org/10.1016/j.jallcom.2014.10.201

Zhou, C. Shen, L. Liu, M. Gao, C. Jia, Ch. and Jiang, Ch. (2017). Strong Nonvolatile Magnon-Driven Magnetoelectric Coupling in Single-Crystal. Physical Review Applied. 9 (1) 014006-014014. https://doi.org/10.1103/PhysRevApplied.9.014006

Downloads

Published

2021-05-14

How to Cite

Hernández Cabanas, J., Monsivais Galindo, G., & Otero Hernández, J. A. (2021). Magneto-electric coupling constants in piezoelectric/piezomaganetic layered composite. Nova Scientia, 13(26). https://doi.org/10.21640/ns.v13i26.2456

Issue

Section

Natural Sciences and Engineering

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.