Biochemical characterization of AmiJ33 an amylase from Bacillus amyloliquefaciens isolated of sugarcane soils at the Papaloapan region

Authors

  • J. J. Montor-Antonio Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca
  • C. Olvera-Carranza Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
  • D. Reyes-Duarte Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Depto. de Procesos y Tecnología
  • B. Sachman-Ruiz Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
  • L. Ramírez-Coutiño Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca
  • S. Del Moral Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca

DOI:

https://doi.org/10.21640/ns.v6i12.23

Keywords:

soils, ?-amylase, Bacillus amyloliquefaciens, enzyme production

Abstract

Amylase (EC 3.2.1.1) from Bacillus amyloliquefaciens JJC33M (AmiJ33) was produced by submerged fermentation. Peptone, yeast extract, Ca+2 and the glycine effect over AmiJ33 production was analyzed shown that yeast extract and Ca+2 concentration increased in 2.5 times the AmiJ33 production. By mean precipitation using (NH4)2SO4, the enzyme was recovered and the protein was identified by SDS-PAGE demonstrating that AmiJ33 has a molecular weight of 50 kDa. Temperature and pH optimus were determined, the highest values of activity were observed at pH 6.0 and 80° C, however, using slightly acid conditions (pH 4.0 and 5.0) AmiJ33 kept 72% of activity. AmiJ33 was stable for 3 h at 40°C, and 30 min at 45-50° C, retaining 88 and 82% of residual activity respectively. At 60°C, the enzyme activity decreased 40%. The divalent ions increased slightly AmiJ33 activity, however EDTA did not inhibit its activity, while SDS inhibited it completely.

Downloads

Download data is not yet available.

References

Akcan, Nurullah. (2011). High level production of extracellular α-amylase from Bacillus licheniformis ATCC 12759 in submerged fermentation. Romanian Biotechnological Letters 16:6833-6840.

Alikhajeh, Jahan, Khosro Khajeh, Ranjbar Bijan, Naderi-Manesh Hossein, Yi-Hung Lin, Enhung Liu, Hong-Hsiang Guan, Yin-Cheng Hsieh, Phimonphan Chuankhayan, Yen-Chieh Huang, Jeyakanthan Jeyaraman, Ming-Yih Liua, y Chun-Jung Chena. (2010). Structure of Bacillus amyloliquefaciens a-amylase at high resolution: implications for thermal stability. Acta Crystallographica Section F Structural Biology and Crystallization Communications. F66, 121–129

Alves, Maria Helena, Campos-Takaki, Galba M., Figueiredo-Porto, Ana Lúcia y Milanez, Ivo Milanez. (2002). Screening of Mucor spp. for the production of amylase, lipase, polygalacturonaseand protease. Brazilian Journal of Microbiology 33:325-330.

Aygan, Ashabil, Arikan Burhan, Korkmaz Hatice, Dinçer Sadik y Çolak Ömer. (2008). Highly thermostable and alkaline α-amylase from a halotolerant alkaliphilic Bacillus sp. AB68. Brazilian Journal of Microbiology 39: 547-553.

Ballschmiter, Meike, Futterer, Ole, Wolfgang Liebl (2006) Identification and characterization of a novel intracellular alkaline-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Applied and Environmental Microbiology 72: 2206–2211

Bano, Saeeda, Qader, Shah, Ali Ul, Aman Afsheen, Syed, Muhammad Noman y Azhar, Abid. (2011). Purification and characterizationof novel α-amylase from Bacillus subtilis KIBGE HAS. AAPS Pharmscitech. 12:255-264.

Bessler, Cornelius, Schmitt, Jutta, Maurer, Karl Heinz y Schmid, Rolf D. (2003). Directed evolution of a bacterial -amylase: toward enhanced pH performance and higher specific activity. Protein Science 12:2141–2149.

Devi, Lamabam Sophiya, Khaund, Polashree y Joshi, S. R. (2010). Thermostable amylase from natural variants of Bacillus spp. prevalent in eastern Himalayan Range. African Journal of Microbiology Research 23:2534-2542.

Gangadharan, Dhanya, Sivaramakrishnan, Swetha, Nampoothiri, K. Madhavan y Pandey, Ashok. (2006). Biochemical characterization of raw-starch-digesting alpha-amylase purified from Bacillus amyloliquefaciens. Food Technology and Biotechnology 2:269–274

Gangadharan, Dhanya, Nampoothiri, K. Madhavan, Sivaramakrishnan, Swetha y Pandey, Ashok. (2009). Biochemical characterization of raw-starch-digesting alpha amylase purified from Bacillus amyloliquefaciens. Applied Biochemistry and Biotechnology 158:653–662.

Goyal, Nidhi, Gupta, J.K. y Soni, S.K. (2005). A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and itsuse in the direct hydrolysis of raw potato starch. Enzyme and Microbial Technology 37:723–734.

Gupta, Rani, Gigras, Paresh, Mohapatra, Harapriya, Goswami, Vineet Kumar y Chauhan, Bhavna. (2003). Microbial α-amylases: a biotechnological perspective. Process Biochemistry 38:1599-1616.

Juwon, Arotupin Daniel y Emanuel, Ogunmalu Funso. (2012). Screening of fungal isolates from nigerian tar sand deposit in ondo state for novel biocatalysts. Journal of Biological Sciences 12:57-61

Krishnan, T., y Chandra, A. K. (1983). Purification and characterization of α-amylase from Bacillus licheniformis CUMC305. Applied and Environmental Microbiology 46:430-437.

Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-684.

Malhotra, R., y Noorwez S. M, Satyanarayana T. (2000). Production and partial characterization of thermostable and calcium independent α-amylase of extreme thermophile Bacillus thermooleovorans NP54. Letters in Applied Microbiology 31:378–384.

Miller Gail Lorenz. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31: 426–428

Najafi, Mohsen Fathi, Deobagkar, Dileep, y Deobagkar, Deepti. (2005). Purification and characterization of an extracellular alpha-amylase from Bacillus subtilis AX20. Protein Expresion and Purification. 2:349-354.

Pandey, Ashok, Nigam Poonam, Soccol Carlos R., Soccol Vanete T., Singh Dalel y Mohan, Radjiskumar. (2000). Advances in microbial amylases. Biotechnology Applied Biochemistry 31: 135-152

Premila, Sasi J., y Dhandayuthapani, K. (2013). Optimization of α-amylase production of Bacillus stearothermophilus KDP from Sago Industry Waste. Int. Journal Applied BioResearch 16:17-21

Quintero, Moreno Mónica, Montoya, Campuzano Olga Inés, y Gutiérrez, Sánchez Pablo. A. (2010). Purification and characterization of a α-amylase produced by Bacillus sp. BBM1. Dyna 77: 31-38.

Rasooli, Iraj, Astaneh, Shakiba Darvish Alipoor, Borna, Hojjat y Barchini, Kamal Azizi. (2008). A thermostable a-amylase producing natural variant of Bacillus spp. isolated from soil in Iran. American Journal of Agricultural and Biological Sciences 3: 591-596

Ray, R. C., Kar, S, Nayak S., y Swain, M. R. (2008). Extracellular α-amylase production by Bacillus brevis MTCC 7521. Food Biotechnology 22: 234–246

Roychoudhary, Siddhartha, Parulekar, Satish J., y Weigand, William A. (1989). Cell growth and α-amylase production characteristics of Bacillus amyloliquefaciens. Biotechnology and Bioengineering 33: 197–206.

Shaw, Jei-Fu, Lin Fu-Pang, Chen Su-Chiu y Chen Hasing-Chen. (1995). Purification and properties of an extracellular α-amylase from Thermus sp. Botanical Bulletin of Academia Sinica 36:195-200.

Teodoro, Carlos Eduardo de Souza y Martins, Meire Lelis Leal. (2000). Culture conditions for the production of thermostable amylase by Bacillus sp. Brazilian Journal of Microbiology 31:298-302.

Thippeswamy S., Girigowda K., y Mulimani V. H. (2006). Isolation and identification of amylase producing Bacillus sp. from dhal industry waste. Indian Journal of Biochemistry and Biophysics 43:295-298

van der Maarel, Marc J.E.C., van der Veen, Bart, Uitdehaag, Joost C.M., Leemhuis, Hans, y Dijkhuizen, L. (2002). Properties and applications of starch converting enzymes of the α-amylase family. Journal of Biotechnology 94:137–155.

Vaseekaran S., Balakumar S., y Arasaratnam V. (2010). Isolation and identification of a bacterial strain producing thermostable α-amylase. Tropical Agricultural Research 1:1-11

Vihinen, Mauno y Mantsala, Pekka. (1989). Microbial amylolytic enzymes. Critical Reviews in Biochemistry and Molecular Biology 24:329-418.

Vijayabaskar, P., Jayalakshmi D., y Shankar, T. (2012). Amylase production by moderately halophilic Bacillus cereus in solid state fermentation. African Journal of Microbiology Research 23:4918-4926.

Weisburg, William G., Barns Susan M., Pelletier, Dale A., y Lane, David J. (1991). 16S Ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology. 173:697-703.

Wind, R. D., Buitelaar, R. M., Eggink, G., Huizing, H. J., Dijkhuizen, L. (1994). Characterization of a new Bacillus stearothermophilus isolate: a highly thermostable a-amylase producing strain. Applied Microbiology and Biotechnology 41:155-162.

Xu D, Coté J. C. (2003) Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3' end 16S rDNA and 5' end 16S 23S ITS nucleotide sequences. Inter. Journal System and Evolutinary Microbiology 53: 695-704.

Zar, Mian Sahib, Ali, Sikander y Shahid, Ahmad Ali. (2013). The influence of carbon and nitrogen supplementation on alpha amylase productivity of Bacillus amyloliquefaciens IIB-14 using fuzzy-logic and two-factorial designs. African Journal of Microbiology Research. 2:120-129,

Zhang, Qixian, Tsukagoshi, Norihiro, Miyashiro, Shigeyoshi y Udaka, Shigezo. (1983). Increased production of α-amylase by Bacillus amyloliquefaciens in the presence of glycine. Applied and Environmental Microbiology 46:293-295.

Published

2014-10-08

How to Cite

Montor-Antonio, J. J., Olvera-Carranza, C., Reyes-Duarte, D., Sachman-Ruiz, B., Ramírez-Coutiño, L., & Del Moral, S. (2014). Biochemical characterization of AmiJ33 an amylase from Bacillus amyloliquefaciens isolated of sugarcane soils at the Papaloapan region. Nova Scientia, 6(12), 39–59. https://doi.org/10.21640/ns.v6i12.23

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.