Transport properties of sinusoidal graphene superlattices

Authors

  • José Alberto Briones Torres Unidad Académica de Física, Universidad Autónoma de Zacatecas
  • Isaac Rodríguez-Vargas Unidad Académica de Física, Universidad Autónoma de Zacatecas

DOI:

https://doi.org/10.21640/ns.v7i14.193

Keywords:

Graphene, superlattices, transfer matrix, bound states

Abstract

We used the transfer-matrix method to study the tunneling of Dirac eletrons through graphene superlattices. We have considered two types of sinusoidal superlattices: (1) electrostatic-barrier structures created by application of electrostatic potentials and (2) susbtrate-barrier structures, obtained by alternating susbtrates that open and non-open a bandgap on graphene. We found the transmission, transport and electronic structure properties for different set of parameters such as well and barriers widths, energy and angle of incident as well as barriers number. We find: (1) the important role of Klein tunneling, (2) the transmission and transport properties have certain symmetry about the origin of the energy, and (3) the sinusoidal character of the system entails a decrease in the level of the subbands in the spectrum of bound states, and degenerates and causes the opening and closing of minibands in the same energy level

Downloads

Download data is not yet available.

References

Bai C. and X. Zhang, 2007. Klein paradox and resonant tunneling in a graphene superlattice. Phys. Rev. B 76: 075430.

Barbier, M., P. Vasilopoulos, F. M. Peeters, and J. Milton Pereira, Jr. 2009. Bilayer graphene with single and multiple electrostatic barriers: Band structure and transmission. Phys. Rev. B 79: 155402.

Briones-Torres J. A., J. Madrigal-Melchor, J. C. Martínez-Orozco, and I. Rodríguez-Vargas.2014. Electrostatic and susbstrate-based monolayer graphene superlattices: Energy minibands and its relation with the characteristics of the conductance curves. Superlattices and Microstructures 73: 98-112.

Datta, S. 1995. Electronic Transport in Mesoscopic Systems. Cambridge University Press.

Esaki L. and R. Tsu. 1970. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Develop. 14: 61-65.

Grahn H.T. 199. Semiconductor Superlattices: Growth and Electronic Properties. World Scientific.

Katsnelson, M. I., and K. S. Novoselov. 2007. Graphene: New bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143:3-13.

Katsnelson, M. I., K. S. Novoselov and A. K. Geim. 2006. Chiral tunneling and the Klein paradox in graphene. Nat. Phys. 2:620-625.

Novoselov, K. S., A. K. Geim, S. V. Mrozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. 2004. Electric field effect in atomically thin carbon films. Science 306:666-669.

Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. 2005. Two-dimensional gas of massless Dirac fer-mios in graphene. Nature 438:197-200.

Pereira J. M. Jr., V. Mlinar, F. M. Peeters, and P. Vasilopoulos. 2012. Confined states and direction-dependent transmission in grapheme quantum wells. Phys. Rev. B. 74:04524.

Rodríguez-Vargas, I., J. Madrigal-Melchor and O. Oubram. 2012. Resonant tunneling through double graphene systems: A comparative study of Klein and non-Klein tunneling structures. J. Appl. Phys. 112:073711.

Sinha C. and R. Biswas. 2011. Unconventional ballistic transport through bilayer graphene electrostatic barriers. Phys. Rev. B 84: 155439.

Tsu, R. and L. Esaki. 1973. Tunneling in a finite superlattice. Appl. Phys. Lett. 22: 562-564.

Viana Gomes, J. and N. M. R. Peres. 2008. Tunneling of Dirac electrons through spatial regions of finite mass. J. Phys.: Condens. Matter 20: 325221. Wallace, P. R. 1947. The band theory of graphite. Phys. Rev. 71:622-634.

Yeh, P. 2005. Optical Waves in Layered Media. Wiley-Interscience.

Young A. F. and P. Kim. 2009. Quantum interference and Klein tunneling in graphene heterojunctions. Nat. Phys.5: 222-226.

Zhang, Y., Y. -W. Tan, H. L. Stormer, and P. Kim. 2005. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201-204.

Zhou, S. Y., G. -H. Gweon, A. V. Fedorov. P. N. First, W. A. de Heer, D. -H. Lee, F. Guinea, A. H. Castro-Neto, and A. Lanzara. 2007. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6:770-775.

Published

2015-05-25

How to Cite

Briones Torres, J. A., & Rodríguez-Vargas I. (2015). Transport properties of sinusoidal graphene superlattices. Nova Scientia, 7(14), 431–451. https://doi.org/10.21640/ns.v7i14.193

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.