Standard uncertainty calculation by Monte Carlo technique for topography and hole-filed displacement measurement means ESPI

Authors

  • Jorge Ramón Parra-Michel Universidad De La Salle Bajío
  • Amalia Martínez García Centro de Investigaciones en Óptica A.C.

DOI:

https://doi.org/10.21640/ns.v5i9.157

Keywords:

speckle interferometry, ESPI, standard uncertainty, Monte Carlo technique

Abstract

Is unique the advantage of interferometric techniques based in speckle phenomena. A Hole field measurement in mechanical elements can be obtained with height precision when they are under deformation. However, when divergent illumination is used, we can see that topography measurement is a function of the shape of the object. Therefore, before evaluating the mechanical deformations by ESPI with divergent illumination is necessary to know the topography of the Parra-Michel, J. y A. Martínez Revista Electrónica Nova Scientia, Nº 9 Vol. 5 (1), 2012. ISSN 2007 - 0705. pp: 51 - 75 - 53 - object. The estimated standard uncertainty of the measurements of displacement fields must consider uncertainty measurement of the topography that spreads due to generalized law of propagation of uncertainty. This work we show the use of Monte Carlo technique to calculate the standard uncertainty for the measurement of displacement fields and surface topography using the technique of interferometry electronic speckle pattern with dual illumination and divergent

Downloads

Download data is not yet available.

References

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories. ISO standards, (2005)

Alicia Maroto, Ricard Boqué, Jordi Riu, F. Xavier Rius, “Incertidumbre y precisión”, Departamento de Química Analítica y Química Orgánica, Instituto de Estudios Avanzados, Universitat Rovira i Virgili.

International Organization for Standardization, “Evaluation of measurement data, Guide to the expression of uncertainty in measurement”, International Organization for Standardization, Geneva, (1993)

Ignacio Lira, “Evaluating the measurement uncertainty: fundamentals and practical guidance”, Meas. Sci. Technol. 13 (2002) 1502.

JCGM 100:2008, "Evaluation of measurement data-Guide to the expression of uncertainty in measurement", GUM 1995 with minor corrections, (2008)

JCGM 101:2008, Evaluation of measurement data— Supplement 1 to the “Guide to the expression of uncertainty in measurement”-Propagation of distributions using a Monte Carlo method, GUM 1995 with minor corrections, (2008)

Raúl R. Cordero, Jerome Molimard, Amalia Martínez, Fernando Labbe, “Uncertainty analysis of temporal phase-stepping algorithms for interferometry”, Opt. Comm. 275 (2007) 144-155.

Pedro Américo Almeida, Magalhaes Jr., Perrin Smith Neto, Clovis Sperb de Barcellos, “Generalizacion of the carré algorithm”, Latin American Journal of Solids and Structures. 6 (2009) 213- 227.

Amalia Martínez, Raúl Cordero, Juan Antonio Rayas, Héctor José Puga, Ramón Rodríguez-Vera, "Uncertainty analysis of displacements measured by in-plane electronic speckle-pattern interferometry with spherical wave fronts", Appl. Opt. 44 (2005) 1141-1149 .

Thomas Kreis, “Handbook of Holographic Interferometry, Optical and Digital Methods”, WILEY-VCH GmbH & Co. KGaA, Weinheim, (2005)

Jorge Parra-Michel, Amalia Martínez, Marcelino Anguiano-Morales, J. A. Rayas, “Measuring object shape by using in-plane electronic speckle pattern interferometry with divergent illumination ”, Meas. Sci. Technol. 21 (2010) 045303.

Kjell J. Gasvik, Optical metrology. John Wiley & Sons, London (2002)

Yeou-Yen Cheng, James Wyant, "Phase shifter calibration in phase- shifting interferometry", Appl. Opt. 24 (1985) 3049-3052.

Daniel Malacara, Manuel Servín, Zacarias Malacara, interferogram analysis for optical testing, 2nd ed., CRC Press, New York (2005)

Thomas Kreis, Holographic interferometry, principles and methods, Akademimie Verlang, Berlin (1996)

Ramón Rodríguez-Vera, D. Kerr, F. Mendoza-Santoyo, “Electronic speckle contourning”, J. Opt. Soc. Am. 9 (1992).

Published

2014-10-28

How to Cite

Parra-Michel, J. R., & Martínez García, A. (2014). Standard uncertainty calculation by Monte Carlo technique for topography and hole-filed displacement measurement means ESPI. Nova Scientia, 5(9), 51–75. https://doi.org/10.21640/ns.v5i9.157

Issue

Section

Biological Sciences

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.