Synthesis and characterization of the solid ionic conductor La0.43Ce0.1Li0.30TiO3

Authors

  • Néstor Fernández Fernández Facultad de Química. Universidad de la Habana
  • Mario Fidel García Sánchez Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas. Instituto Politécnico Nacional
  • Teobaldo Mariño Otero Laboratorio de Análisis Estructural, Instituto de Ciencia y Tecnología de Materiales. Universidad de la Habana
  • Issis Claudette Romero Ibarra Instituto de Investigaciones en Materiales. Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.21640/ns.v5i9.156

Keywords:

Lithium ion conductors, Seebeck coefficient, perovskites, Lithium batteries

Abstract

The improvement of storing energy devices is an important subject in present days. This paper deals with materials that potentially could be employed as solid electrolytes in secondary lithium batteries. The complex oxide La0.43Ce0.1Li0.30TiO3 was prepared by a ceramic method. The structural characterization was carried out by X ray powder diffraction and electric properties were analyzed by Electric Polarization in Solid State technique and the Seebeck coefficient calculus. The obtained solids have orthorhombic perovskite-like crystalline structure and they are ionic conductors of lithium ion whereas electronic conduction is absent.

Downloads

Download data is not yet available.

References

Bohnke O., Bohnke C., and Fourquet J.L. (1996). Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ionics. (91): 21-31.

Catti, Michele. (2007). First-principles modeling of lithium ordering in the LLTO (LixLa2/3-x/3TiO3) superionic conductor. Chem. Mater. (19): 3963-3972.

Fernández N., Escribano P., Cordoncillo E.,. Beltrán H, García-Sánchez M.F., Romero-Ibarra I.C., and Masó N. (2012). Crystal structure and electrical properties of La0.45Ce0.1Li0.27TiO3 synthesized by sol-gel technique. New Journal of Glass and Ceramics (2): 59-64.

Fortal’nova E.A., Gavrilenkov O.N., Belous A.G. and Politova E.D. (2009). Lithium-ion conducting oxides: Synthesis, structure, and electroconducting properties. Russian Journal of General Chemistry (79): 1987-1997.

García-Sánchez M.-F., Fernández N., Martínez-Sarrión M.L., Mestres L., Santana G., and Ruiz-Salvador A.R. (2012). Chemical insertion in the perovskite solid solutions Pr0.5+x-yLi0.5-3xBiy2xTiO3: implications on the electrical properties. Materials Science and Engineering B (177): 563-569.

García-Sánchez M.F., Fernández N., Martínez-Sarrión M.L., Mestres L., Herraiz M., Escribano P., Cordoncillo E., and Beltrán H. (2005). Comparison of the preparation of new lithium conductor Pr0.5Bi0.05Li0.35TiO3 by sol gel and ceramic method. Physica Status Solidi B (242): 1924-1927.

García-Sánchez M.F., Fernández N., Martínez-Sarrión M.L., Mestres L., Fernández-Gutierrez F., Santana G., Ruiz-Salvador A.R. (2008). Separation of electronic and ionic conductivity in mixed conductors from the AC response: Application to Pr0.56Bi0.04Li0.2TiO3. Applied Physics Letters (93): 034105.

Inaguma Y., Yu J., Katsumata T., and Itoh M.J. (1997). Lithium ion conductivity in a perovskite lanthanum lithium titanate single crystal. Ceramic Society of Japan: International Edition (105): 597.

Knauth, Philippe. (2009). Inorganic solid Li ion conductors: An overview. Solid State Ionics (180): 911-916.

Martínez-Sarrión M.L., Mestres L., Herráiz M., Maqueda O., Fernández N., and García M.F. (2003). Synthesis and electrical properties of the Pr0.5+x-yBiyLi0.5-3xTiO3 system. European Journal of Inorganic Chemistry : 2458-2462.

Pérez Cappe E., Echevarría Y., Rodríguez Gattorno G., and García Sánchez M.F. (2000). Obtención y caracterización de espinelas con conducción mixta. Revista Cubana de Química (12): 60-70.

Pfeiffer H. and Bosch P. (2005). Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li6Zr2O7). Chemistry of Materials (17): 1704-1710.

Ruiz-Salvador A. R., García-Sánchez M.F., O’Reilly-Lukin M., Lewis D.W., and Gomez A. (2005). Approaching the structure of heavily defective ionic oxides through atomistic modelling. Physica Status Solidi C (2): 3521-3524.

Stramare S., Thangadurai V., and Weppner W. (2003). Lithium lanthanum litanates: A review. Chemistry of Materials (15): 3974-3990.

Vijayakumar M., Inaguma Y, and Mashiko W. (2004). Synthesis of fine powders of Li3xLa2/3-xTiO3 perovskite by a polymerizable precursor method. Chemistry of Materials (16): 2719-2724.

V’yunov O.I., Gavrilenko O.N., Kovalenko L.L., Chernukhin S.A. and Vasilechko L.O. (2011). Intercalation processes influence the structure and electrophysical properties of lithium-conducting compounds having defect perovskite structure. Russian Journal of Inorganic Chemistry (56): 93-98.

Published

2014-10-28

How to Cite

Fernández Fernández, N., García Sánchez, M. F., Mariño Otero, T., & Romero Ibarra, I. C. (2014). Synthesis and characterization of the solid ionic conductor La0.43Ce0.1Li0.30TiO3. Nova Scientia, 5(9), 42–50. https://doi.org/10.21640/ns.v5i9.156

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.