Computational modeling by linear regression and symbolic α β to optically determine the pore size of the skin

Authors

  • Norma Patricia Puente Ramirez Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León
  • L. M. Torres-Treviño Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León
  • J. E. Sánchez-Cantú Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.21640/ns.v7i14.136

Keywords:

skin pore, linear regression, PSO, numerical modeling

Abstract

The appearance of pores of the skin is normally caused by overactive sebaceous glands, however, in recent years it has been reported that in addition is affected by various diseases including diabetes[1], obesity [2] or cancer [3]. Generally the main factors contributing to the enlarged pores are age, male gender, acne, chronic sun exposure and genetic predisposition. The development of a noninvasive method to know the conditions of the skin could help to relate the factors that determine the pore size of the skin. This paper aims to characterize, through a computational model and with the help of an optical scheme, the pore size of the skin. The physical principle is to illuminate with LEDs (543nm) the forearm of volunteers, the scattering of light generated by the skin is collected by a CCD camera. The image acquisition, processing and statistical analysis are part of the methodology for data adquisition. The mathematical model proposed relates gender, age, skin tone and pore size (calculated statistically on images acquired optically). A database is generated and used to build mathematical models by symbolic regression with Particle Swarm Optimization (PSO), and a comparison by linear regression is performed. Some statistical indicators such as mean square, error prediction, error sum of squares and percentage of variability are used in the comparison. The results indicate that the proposed model, for the pore size of each individual, can help make an objective interpretation of disease indicators that directly affect the pore size in the skin.

Downloads

Download data is not yet available.

Author Biography

Norma Patricia Puente Ramirez, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León

Profesor de tiempo completo en el Posgrado de Ingenieria Eléctrica.

References

Jerrold S. Petrofsky, Katie McLellan, Gurinder S. Bains, Michelle Prowse, Gomathi Ethiraju, Scott Lee, Shashi Gunda, Everett Lohman III, and Ernie Schwab. Skin Heat Dissipation: The Influence of Diabetes, Skin Thickness, and Subcutaneous Fat Thickness, Diabetes Technology & Therapeutics (2008). 10(6): 487-493.

Derraik, J. G., Guso S., Peart, J.M., Rademark, J.M., Cutfield, W.S. and Hofman, P. L. Preliminary data on dermis and subcutis thickness in adult with type 1 and 2 diabetes mellitus. Australasian Journal of Dermatology (2014).doi:10.1111/ajd.12177.

Fabrizio Ayala, Marco Palla, Rosella Di Trolio, Nicola Mozzillo and Paolo A. Ascierto, The role of optical radiation in skin cáncer. ISRN Dermatology (2013). ID 842359.

R Rox Anderson and John A Parrish. The optics of human skin. Journal of Investigative Dermatology (1981). 77, pp.13-19.

W.F. Cheong, S. A. Prhal, and J.Welch. Areview of the optical properties of biological tissues. Journal of Quantum Electronics (1990). 26:2166-2185.

A.N. Bashkatov, E. A Genina, V. I. Kochubey and V. V. Tuchin. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of physics D (2005). 38(5), pp.2543.

E. Edwards and S. Quimby Duntley. The pigments and color of living human skin. American Journal of Anatomy (2005). 65(1), pp. 1-33.

Silvia E. Mancebo / Steven Q. Wang. Skin cancer:role of ultraviolet radiation in carcinogenesis. Reviews on Environmental Health (2014). 29(3), pp.265-273.

Judi T. Whitton and J. D. Everall. The thickness of the epidermis. British journal of dermatology (1973). 89(5), pp.467-47.

Dawn Lipscomb, Ibitissam Echchgadda, Xomalin G. Peralta and Gerald J. WilminkDetermination of the optical properties of melanin pigmented human skin equivalents using terahertz time-domain spectroscopy (2013). 8585F.

Fábio V. B. de Nazaré, Marcelo M. Werneck, Rodrigo P. de Oliveria, D.M. Santos, R.C. Allil and B. A. Ribeiro. Development of an optical sensor head for current and temperatura measurements in power systems. Journal of sensors (2013). ID 393406.

Jian Wang anda Alan E. Willner. Review of robust data exchangue using optical nonlinearities. International Journal of optics (2012). ID 575429.

Amr A. Essawy and M.S. Attia. Novel application of pyronin and fluorophore as high sensitive optical sensor of glucose in human serum. Talanta (2013). 30(107):18-24.

Shuai Liu, Weina Fu, Wenshuo Zhao, Jiantao Zhou and Qianzhong Li. A novel fusion method by static and moving facial capture. Mathematical Problems in Engineering (2013). pp.891-892.

Asaf Shenhav, Ziv Brodie, Yevgeny Beiderman, Javier Garcia, Vicente Mico and Zeev Zalevsky. Optical sensor for remote estimation of alcohol concentration in blood stream. Optics communications (2013). 289. pp. 149-157.

Lhoucine Ben Mohammadi, Thomas Klotzbuecher, Susanne Sigloch, Knut Welzel and Lukas Schauppd Michael Goddel, Thomas R. Pieber. In vivo evaluation of a chip based near infrared sensor for continuos glucose monitoring. Biosensors and bioelectronics (2014). 53,pp.99-104.

Martin Drahansky, Michal Dolezel, Jan Vana, Eva Brezinova, Jaegeol Yim and Kyubark Shim. New optical methods for liveness detection on fingers. BioMed Research International (2013).

Murray R. Spiegel and Larry J. Stephens. Estadística (2009). Mac Graw Hill. 4 Edición.

Luis M. Torres-Treviño. Symbolic regression using α, β operators and estimation of distribution algorithms: Preliminary Results. 3rd symbolic regression and modeling workshop for GECCO (2011).

L.A. Alvarado-Yañez, L. M. Torres-Treviño, F. González and L. Nieves,”A mathematical model of a cold rolling mill by symbolic regression α,β”., Proceeding of the 2014 conference on Genetic and evolutionary computation, GECCO (2014), pp. 1347-1352

J. Kennedy y R.C. Eberhart. Particle swarm optimization. In IEEE Service Center. Piscataway, New Jersey, In Proceeding of the 1995 IEEE International Conference on Neural Networks, vol 3498, pp 1942-1948.

A. J. Durillo, J. Garca-Nieto, A.J. Nebro, C.A Coello Coello, F. Luna and E. Alba. Particle swarm optimization. In IEEE service center. Piscataway, New Jersey, editor. In proceeding of the 1995, IEEE International Conference on Neural Networks (1995). 3498, pp 1942-1948.

Published

2015-05-25

How to Cite

Puente Ramirez, N. P., Torres-Treviño, L. M., & Sánchez-Cantú, J. E. (2015). Computational modeling by linear regression and symbolic α β to optically determine the pore size of the skin. Nova Scientia, 7(14), 218–235. https://doi.org/10.21640/ns.v7i14.136

Issue

Section

Natural Sciences and Engineering

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.